
United States
Department of
Agriculture

Forest Service

Forest
Products
Laboratory

General
Technical
Report
FPL-GTR-72

Fortran Programs
for Reliability
Analysis
John J. Zahn

Abstract Contents

This report contains a set of FORTRAN subroutines
written to calculate the Hasofer-Lind reliability
index . Nonlinear failure criteria and correlated basic
variables are permitted . Users may incorporate these
routines into their own calling program (an example
program. RELANAL, is included) and must provide a
failure criterion subroutine (two example subroutines.
LINFAIL and YLINEN. are included) .

Keywords: Reliability. FORTRAN. safety. design

July 1992

Zahn. John J . 1992 . Fortran programs for reliability
analysis . Gen . Tech . Rep . FPL-GTR-72 . Madison. WI:
U.S. Department of Agriculture. Forest Service. Forest
Products Laboratory . 25 p .

A limited number of free copies of this publication
are available to the public from the Forest Products
Laboratory. One Gifford Pinchot Drive. Madison. WI
53705-2398 . Laboratory publications are sent to more than
1,000 libraries in the United States and elsewhere .

The Forest Products Laboratory is maintained in coopera-
tion with the University of Wisconsin.

Page

Introduction 1

Discussion of Main Algorithm 1

Linear Approximation of g 2

Example of a Nonlinear Failure Criterion . . . 3

Non-normal Variables 3

Correlated Variables 4

Main Algorithm 4

Notation 5

Structure Chart 5

Description and Purpose of Programs 5

RELANAL 5

INPT 5

EL2SRCH 5

OUTPT 5

FAIL 5

DIST 6

INVNORM 6

GAMMA 6

Input and Output Instructions for RELANAL . . 6

Input Preparation 6

Mandatory Input 6

Optional Input 6

Input/Output Table 7

Example Applications 7

Availability 7

References 7

Appendix A . Sample Input and Output
for RELANAL 9

Sample Input and Output with LINFAIL . . . 9

Sample Input and Output with YLINEN 9

Appendix B. Program Listings 12

Appendix C. Error Messages 25

Fortran Programs for Reliability Analysis
John J. Zahn, Research General Engineer
Forest Products Laboratory, Madison, Wisconsin

Introduction
The high level of interest in structural reliability
among wood engineers prompted development of these
programs. The author served on a task committee of
the American Society of Civil Engineers whose task was
to develop a Load and Resistance Factor Design pre-
standard (American Society of Civil Engineers, 1988)
and wrote these programs as a part of that effort.

The programs are intended for teaching and research
applications. The user should be familiar with the
basics of structural reliability analysis. An excellent
introductory text is that of Thoft-Christensen and
Baker (1982), which is listed in the references. The
theory is briefly reviewed here under the heading
Discussion of Main Algorithm. Most users should
be those who write their own Fortran programs for
particular reliability analysis applications. These
subroutines are designed to calculate the so-called
Hasofer-Lind reliability index (Hasofer and Lind, 1974;
Thoft-Christensen and Baker, 1982) by a trial and
error technique that is well suited to civil engineering
design applications. The programs are quite general;
the failure criterion may be nonlinear, and the variables
it contains may be correlated. The user must provide
the failure criterion subroutine and prescribe the
correlation matrix if the variables are not independent.

The code is compact and well suited for use on personal
computers. The language conforms to the ANSI
FORTRAN 77 standard.

The heart of these software programs is the subroutine
EL2SRCH and its subprograms DIST, INVNORM, and
GAMMA. When linked with a user-supplied subroutine
FAIL, these programs perform the trial and error
search technique described in Thoft-Christensen and
Baker (1982). See Discussion of Main Algorithm and
Description and Purpose of Programs for complete
details.

An example program RELANAL is provided showing
how these subroutines can be incorporated into a larger
reliability analysis program. Two examples of the
user-supplied subroutine FAIL, namely LINFAIL and
YLINEN, are also shown.

This manual contains a structure chart for program
RELANAL, program descriptions, input/output
summaries, and example applications. Availability
of the programs is discussed under the heading
Availability. Complete program listings are provided
in Appendix B to further clarify the meaning of the
algorithms and to enable users to modify the programs
to suit their needs. Error messages are shown in
Appendix C.

Discussion of Main Algorithm
In the reliability analysis performed in these programs,
the Hasofer-Lind reliability index β is calculated by a
process of minimization. That index is approximately
related to the probability of failure by the equation

bution function (CDF). Equation (1) is exact when the
failure criterion is linear and all random variables have
normal distributions. β is defined as follows:

in which Φ is the standard normal cumulative distri-

Given a vector of basic variables X,

a failure surface aw on which the failure criterion
g (X) = 0, and

a safe region g (X) > 0,

introduce reduced variables Z

in which S, is a diagonal matrix of standard deviations
of X, and µx is the mean of X. Then the Hasofer-Lind
reliability index b is defined as (Fig. 1)

The point on the failure surface at which Z has
minimum magnitude is called the design point and
will be denoted Z*. The vector Z can be written as
the product of its magnitude β and a unit vector α :

Get estimated design point in X -space:

Iterate from step 1 until convergence is obtained.

Here we take our first guess to be some starting value
β o and b i = +1 for resistances and b i = –1 for
loads. To ensure convergence, a good starting value
β o must be found by trial or past experience. Starting
the loop with the multiplication by Sx is motivated by
the desire to start with a slightly better first guess for
the a i than if the c i had simply been initialized to ±1.

Linear Approximation of g

Solving g = 0 for β each time through the loop may
be difficult when g (X) is nonlinear. As long as we
are relying upon convergent iteration we may as well
approximate g (X) with a local linear approximation

Figure 1–Definition of Hasofer-Lind reliability
index β. Safe region is shaded.

When Z is a minimum the unit vector α will be normal
to the surface aw. Therefore we use a vector c which
is normal to that surface to construct α. Let h(Z) be
g (X) in the Z space. Then a suitable choice for c is

and

Using the chain rule for partial differentiation, (4)
becomes

in which

The following search loop1 will converge to b if the
initial guess for the design point is sufficiently close:

Initialize
Step 1–Construct c normal to failure surface

at the estimated design point:

Reduce c to a unit vector a:

1 The := sign used here is a “replacement” operator.
For example, x := x + 1 means that x is replaced by
x + 1.

each time through the loop. Then both approximation
processes can converge simultaneously. This replaces
the solution of g (X) = 0 with the simple replacement
statement

This result is easily derived as follows:

Let Z be the current trial value for which g is small but
not yet zero and Z' be the next trial value. Then by
Taylor’s theorem

We want g (Z') = 0 and by construction of a (6) we
have that c T α = –| c |. Therefore (9) follows.

Solving for b is the “analysis” problem. The corre-
sponding “design” problem is one in which b is speci-
fied and the mean of one of the basic variables is to be
found. Again, replacing g with a linear Taylor series
approximation results in a simple replacement state-
ment:

This too is easily established. Applying Taylor’s
theorem in the X space,

This time only the j -th X varies so the summation
reduces to bj(µ'j - µj) and (11) follows.

2

Example of a Nonlinear Failure Criterion

Suppose we wish to analyze the reliability of a column
design using Ylinen's column formula as the nonlinear
failure criterion. The column formula is (Ylinen,
1956)

in which

and P is the failing load, P c is the crushing resistance,
P e is the Euler buckling resistance, and 0 < c < 1
is an adjustable parameter. The two resistances P c
and P e are obtained from distributions for compressive
strength F c and modulus of elasticity E as follows:

in which A is the cross section area, B =
and L/r is the slenderness ratio (ratio of effective
length to radius of gyration of cross section).

For simplicity, we shall suppose that the load is
determinate so that the problem is statistically two
dimensional.

The evaluation of g and its derivatives b would be
encoded as follows:

For this two-dimensional problem, the safe region would
appear as in Figure 2. Figure 3 shows the safe region in
the Z –plane.

Non-normal Variables

The simple relationship of the Hasofer-Lind reliability
index β to the probability of failure p f shown in Equa-
tion (1) is exact only if all the basic variables are
normal and the failure criterion is linear. This relation
is approximately true even when the failure criterion is
nonlinear so long as it is approximately linear near the
design point.

To extend β to non-normal variables, it is sufficient to
replace the distributions of non-normal variables with
local normal approximations. Rackwitz and Fiessler
(1977) proposed the simple expedient of choosing the
normal approximation such that its CDF has the same
ordinate and slope as the non-normal CDF at the
design point (Fig. 4). We do this as follows:

Figure 2–Ylinen failure criterion in X plane
with c = 0.80. Safe region is shaded.

Figure 3–Ylinen failure criterion in Z plane.
Safe region is shaded.

Suppose that X j is non-normal with CDF F j (X j) and
probability density function (PDF) f j (X j). Recall
that the PDF is merely the derivative (slope) of the
CDF. Let the corresponding normal approximations be
Φ and φ with mean µ rf j and standard deviation σ rf j .
Equating ordinates requires

3

Figure 4–Definition of Rackwitz-Fiessler normal
approximation. Ordinate and slope are matched
at design point.

and equating slopes requires

This Rackwitz-Fiessler algorithm can be encoded as

in which the superscript denoting design point has been
omitted because at any particular iteration of the loop
X is only approaching X*. That is, the design point
is only reached when the loop has converged. This
coding can be inserted at the end of the loop given
previously. Throughout the rest of the loop, µrfj and
qrfj should be used in place of the actual mean and
standard deviation of X j . The algorithm should be
applied to every non-normal X j .

If F j is the lognormal with mean µ j , coefficient of
variation CV j , and lower limit x jo , then it is easily
shown that (17) and (18) can be reduced in closed
form. The result can be encoded as

Correlated Variables

The essential method here is to use a similarity
transformation to a space in which the variables are

4

uncorrelated and then transform back, However, no
actual transformation need be performed-only some
matrix multiplications with the correlation matrix R.
The derivation of the equations may be found in Zahn
(1989).

The resulting search loop contains the new vectors d
and γ which are analogous to c and α respectively.
If X is uncorrelated, then R is the unit matrix and d
and γ reduce identically to c and α defined previously.
Because the existence of the similarity transformation
is always assured, the algorithm always works, at least
for normal X .

The only problem arises when some of the basic
variables are non-normal. The standard definition
of correlation in terms of covariance applies only to
normal variables. No definition exists for a correlation
matrix if the variables are non-normal, although some
alternative measures of association appear in the
statistical literature for a few special cases.

If one employs the Rackwitz-Fiessler algorithm as
shown above, then substitute normal variables appear
in X, and R must be understood as defining the
correlation of this substitute X. The substitute X will
have a substantially different covariance matrix than
the original X, and the appropriate R matrix to be
used in this algorithm is unknown.

Nevertheless, if one is only interested in studying the
qualitative effects of correlation, or the effect of perfect
correlation, then a user-supplied correlation matrix
is sufficient, even when the variables are non-normal.
Therefore, for generality, EL2SRCH employs a search
loop with both a correlation matrix and the Rackwitz-
Fiessler algorithm. Therefore the main algorithm has
the following final form.

Main Algorithm
Initialize
Step 1–Construct d (analogous to c):

Reduce d to γ (analogous to α):

Get estimated design point in X -space:

Evaluate
Either

For all non-normal X j get normal approximations:
or

Iterate from step 1 until convergence is obtained.

Notation
File names, including program names, are shown in
capital letters:

INPT

File contents are shown in typewriter font:

’DE’,3,0.25

Generic file names are shown in angle brackets:

<filename>.DAT

This means you are to supply your own file name:

JOE.DAT

or whatever is appropriate. Generic file contents are
shown similarly but in typewriter font:

<beta>

This means you are to supply a numerical value such
as 2.75, or whatever is appropriate. Fortran variable
types such as real, integer, character*4, etc. are shown
in parentheses, such as <k> (integer) where needed.

Figure 5–Structure chart for program
RELANAL.

distribution other than the mean, the user must
calculate the nominal from its definition.

How to specify analysis or design mode is discussed
under the heading Input Preparation Instructions for
RELANAL.

Structure Chart
INPT

The structure chart for program RELANAL is shown in
Figure 5.

Description and Purpose
of Programs
The programs are described in the order of their
appearance on the structure chart for the example
application RELANAL.

RELANAL

Program RELANAL has two uses: reliability analysis
and reliability-based design. It can be run in two
modes:

(1) Analysis mode. In the limited context of this
manual, “reliability analysis” means the following:
Given a failure criterion (or safety checking equation)
and distributions for each of its random variables,
RELANAL calculates the Hasofer-Lind reliability index
β.

(2) Design mode. “Design” in this context means that
one uses the failure criterion as a design equation and
solves for the mean of one of the random variables.
Given the reliability index and all distributions
except one, for which the type and COV are specified,
RELANAL calculates its mean. If the nominal design
value is defined as some characteristic value of the

The purpose of program INPT is to provide input
to RELANAL. Input is read from <filename>.DAT,
which is prepared in advance. An output log file
<filename>.LOG is opened for use by all programs,
and a copy of all input is written to the log file.

EL2SRCH

Program EL2SRCH provides a search loop that
minimizes the Hasofer-Lind reliability index β. It is the
heart of this set of programs. See Discussion of Main
Algorithm.

O U T P T

Program OUTPT prints the final values of each
random variable at the design point, along with its
associated component of γ. The magnitude of its γ
component is a rough measure of the importance of the
variable in determining the reliability index β.

Finally, it prints the converged value of b (analysis
mode) or µ j , (design mode).

FAIL

Program FAIL calculates the failure function g (X) and
its partial derivatives b. If you wish to associate names
with the basic random variables X, a character*4 array
XNAME is provided for that purpose. Another real*8

5

array, PARAMS, is provided for passing parameters
between EL2SRCH and FAIL.

This program must be user written. However, a linear
version of FAIL is supplied in file LINFAIL.FOR. The
linear version uses XNAME to distinguish between
loads and resistances. If XNAME(j)= 'LOAD', then
X(j) is a load, and if XNAME(j)= ’RESI’ , then X(j) is a
resistance. It uses PARAMS(1) to pass <N> where <N> is
the number of variables in g (X) , that is, the dimension
of X.

DIST

Program DIST evaluates the CDF and the PDF of a
specified distribution. The distribution must be one
of the following: Weibull, Gumbel, or Frechet. The
search loop handles normal and lognormal distributions
in closed form.

INVNORM

Function INVNORM evaluates the inverse normal
CDF. It uses a Hastings polynomial approximation
with absolute error less than 4.5 × 10 -4

and Stegun, eds., 1972).
(Abramowitz

GAMMA

Function GAMMA evaluates the gamma function Γ(x)
where Γ(n) = (n - 1)!. It uses a Hastings polynomial
approximation with absolute error less than 3 × 10 -7

(Abramowitz and Stegun, eds., 1972).

Input and Ouput
Instructions for RELANAL
Input Preparation

These instructions are also shown on the listing of
program INPT. All input is obtained from an input
file prepared in advance. INPT prompts for the input
filename. The input file is prepared as follows. Note
that when inputing character variables you must
include the single quotes as shown. Either commas or
blanks may be used as separators.

Mandatory Input

You must enter basic variables, one per line, as follows:

<class>, <type>, <mean>, <std dev>, <min>, <name>

in which

<class> (character*2) is ’RE’ or ’LO’, where ’RE’
denotes a resistance variable and ’LO’ denotes a load
variable.

6

<type> (character*2) is ’NO’ or ’LO’ or ’WE’ or ’GU’ or
‘FR’ . This specifies the distribution type. ’NO’ denotes
normal, and the other specifications denote lognormal,
Weibull, Gumbel, and Frechet respectively.

<mean> (real) is the mean value,

<std dev> (real) is the standard deviation,

<min> (real) is the lower limit (this must be included
but will be ignored for those distributions that have
–o as their lower limit), and

<name> (character*4) is ’RESI’ or ’LOAD’ . These are
variable names that LINFAIL uses to distinguish
between resistances and loads.

The only other mandatory input is

’ST’ (character*2).

This terminates subroutine INPT and starts subroutine
EL2SRCH. If a user written subroutine FAIL requires
input, you could read such input from the .DAT file
also. In that case the FAIL input would follow ’ST’.

Optional Input

Optional input is also entered one statement per line as
follows:

’AN’ or

’DE’,<k>,<COV>,

where ’AN’ (character*2) prescribes the analysis mode
(solving for b), and ’DE’ (character*2) prescribes the
design mode (solving for the mean of one variable). In
design mode, <k> (integer) is the index of the desired
variable and <COV> (real) is its coefficient of variation.
The index of a variable depends on the order in which
it is read from the input file (see Mandatory Input).
The first variable has index 1; the second has index 2,
etc.

’EP’,<epsilon>,

where <epsilon> (real) is the relative error in b or
the mean of variable k, µ k , at output (default value of
epsilon is 0.0001). If the search loop halts after only
two executions, you may need to supply a smaller
value of epsilon in order to get things started. This
can happen if the basic variables vary enormously in
magnitude. In general, scaling the basic variables so
that they differ by no more than a factor of one million
is good practice.

’BE’,<beta>

where <beta> (real) is the reliability index (default is
3.0). In analysis mode this is the initial guess, and in
design mode it is the target value.

'IN' or Availability
'CO'

where 'IN' (character*2) denotes independence and
'CO (character*2) denotes correlation. If correlation
is specified, then the upper triangular correlation
matrix (elements above the diagonal) must be input
immediately following, one element per line:

'RM', <i>, <j>, <r>

where 'RM' (character*2) identifies the input line as a
correlation matrix element, <i> and <j> (integer) are
the row and column indices of the matrix element, and
<r> (real) is its value.

Input / Outpu t Table

Table 1 shows the arguments of each program and
whether they are input, output, or both. The program
arguments are also described in comments at the head
of each listing.

Example Applications
Program RELANAL references INPT, OUTPT, and
EL2SRCH. See Input and Output for detailed input
preparation instructions.

Program EL2SRCH finds β if you specify 'AN' (analysis
mode) or µ j , if you specify 'DE' (design mode). It calls
subprogram FAIL to calculate g and b = ag/aX.
Two examples of FAIL are provided; a linear g is in file
LINFAIL, and a nonlinear g corresponding to Ylinen's
column formula is in file YLINEN. Either one may
be linked into the system, or the user may write a
version of FAIL that meets specific needs. EL2SRCH
also calls subprogram DIST during execution of the
Rackwitz-Fiessler algorithm. The following non-normal
distributions are supported: Weibull, Gumbel, and
Frechet. If another distribution is desired, it must
be user supplied (the CDF and the PDF must be
returned by DIST). DIST in turn calls GAMMA when
evaluating the Weibull and Frechet distributions.

The result (β or µ j) is output by OUTPT which also
gives the final values of the vector of basic variables X
and the vector γ. The components of γ indicate the
relative importance of the corresponding basic variable.
(See Appendix A.)

These programs are available on diskette from Forest
Products Laboratory. Requesters should send a blank
formatted diskette along with their request. Future
updates are not contemplated.

References
Abramowitz, M.; Step, I.A., eds. 1972. Handbook
of mathematical functions with formulas, graphs, and
mathematical tables. Applied Mathematics Series
55. Washington, DC: U.S. Department of Commerce,
National Bureau of Standards.

Hasofer, A.M.; Lind, N.C. 1974. An exact and
invariant first order reliability format. Journal of the
Engineering Mechanics Division, American Society of
Civil Engineers. EM1:111-121.

ASCE. 1988. Load and resistance factor design for
engineered wood construction. A pre-standard report.
American Society of Civil Engineers, New York.

Rackwitz, R.; Fiessler, B. 1977. An algorithm for
calculation of structural reliability under combined
loading. Berichte zur Sicherheitstheorie der Bauwerke,
Lab. f. Konstr. Ingb. Munich, Germany.

Thoft-Christensen P.; Baker, MJ. 1982. Structural
reliability theory and its applications. Springer-Verlag,
New York.

Ylinen, A. 1956. A method of determining the buckling
stress and the required cross-sectional area for centrally
loaded straight columns in the elastic and inelastic
range. International Association for Bridges and
Structural Engineering, Zurich, Switzerland, 16: 529-
550.

Zahn, J.J. 1989. Empirical failure criteria with
correlated resistance variables. Journal of Structural
Engineering. 116(11): 3122-3137.

7

Table 1–Input/Output Summary

Program Argument Type Description IN OUT

DIST X
I
J
Xo
MEAN
STDV
CKPR
CDF
PDF

EL2SRCH DISTYP
PROBTYP
BETA
K
COV
EPS
N
CORR
X
GAMA
PARAMS
XNAME
B
R
xo
MEAN
STDV
CKPR

FAIL X
B
G
PARAMS
XNAME

INPT DISTYP
PROBTYP
BETA
K
COV
EPS
N
CORR
XNAME
B
R
xo
MEAN
STDV
CKPR

OUTPT N
PROBTYP
BETA
K
X
GAMA
XNAME
MEAN

Real*8
Integer
Integer
Real*8 Array
Real*8 Array
Real*8 Array
Logical
Real*8
Real*8

Integer Array
Character*2
Real*8
Integer
Real*8
Real*8
Integer
Character*1
Real*8 Array
Real*8 Array
Real*8 Array
Character*4 Array
Real*8 Array
Real*8 Array
Real*8 Array
Real*8 Array
Real*8 Array
Logical

Real*8
Real*8
Real*8
Real*8
Character *4

Integer Array
Character*2
Real*8
Integer
Real*8
Real*8
Integer
Character*1
Character*4 Array
Real*8
Real*8
Real*8
Real*8
Real * 8
Logical

Integer
Character*2
Real*8
Integer
Real*8
Real*8
Character*4 Array
Real*8

One of the basic variables
Index of variable X
Indicates distribution type
Lower limits of distributions
Means of distributions
Standard deviations of distributions
Controls checkprinting
Cumulative distribution function of X
Probability density function of X

Distribution type indicators
ANalysis or DEsign
Reliability index
Design variable index
Design variable COV
Relative error allowed
Number of basic variables
(Y/N)Are basic variables correlated?
Vector of basic variables
Unit vector in X space
User’s values passed to FAIL
User’s names for basic variables
Partial derivatives of G
Correlation matrix
Lower limits of basic variables
Means of basic variables
Std dev’s of basic variables
Controls checkprinting

Vector of basic variables
Partial derivatives of basic variables
Value of failure function
User’s values passed to FAIL
User’s names for basic variables

Distribution type indicators
ANalysis or DEsign
Reliability index
Design variable index
Design variable COV
Relative error allowed
Number of basic variables
(Y/N) Are variables correlated?
User’s names for basic variables
Partial derivatives of G
Correlation matrix
Lower limits of basic variables
Means of basic variables
Std dev’s of basic variables
Controls check printing

Number of basic variables
Analysis or Design
Reliability index
Design variable index
Vector of basic variables
Unit vector in X space
User’s names for basic variables
Means of basic variables

*
*
*
*
*
*
*

*
*

*
*
* *
*
*
*
*
*
* *

*
*
*

*
*
*
* *
*
*

*
*
*

* *
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

8

Appendix A. Sample Input and Output for RELANAL
Sample Input and Output with LINFAIL

When the INPT module prompts you with

CHECKPRINT? (Y/N)

simply enter N. Entering Y would turn on checkprinting, a useful device when searching for errors.
When the INPT module prompts you with

dat filename=?

simply enter the filename SAMPLE and the input data will be taken from the file SAMPLE.DAT
shown in the next section. Output will appear on the screen, and the file SAMPLE.LOG will be
created with a complete record of both input and output. In the next section several examples are
shown.

After the linear failure criterion LINFAIL has been linked into the executable program, the following
input file SAMPLE.DAT will produce the subsequent output file SAMPLE.LOG:

File SAMPLE.DAT:

'RE' 'WE' 4885.525 1645.183 77. 'RESI'
'LO' 'NO' 1102.5 110.25 0 'LOAD'
'AH'
'BE' 2.

File SAMPLE.LOG:

RE WE 4885.5250000 1645.1830000 77.0000000 RESI
LO NO 1102.5000000 110.2500000 0.0000000 LOAD
AN
BE 2.00000
ST
Beta= 2.29431
Beta= 2.52068
Beta= 2.54779
Beta= 2.56395
Beta= 2.56406
Design point:
RESI X(1)=0.1135026191E+04 GAMA(1)=-.9934030325E+00
LOAD X(2)=0.1134915884E+04 GAMA(2)=0.1146752593E+00
Beta= 2.5641

This example illustrates an application to non-normal basic variables. See the INPT listing for an
explanation of the input file SAMPLE.DAT. Note that the output log echoes the input and shows
the successive trial values of β as well as the final design point. The relative magnitudes of the
components of γ show the relative significance of each basic variable in determining the value of the
reliability index β.

Sample Input and Output with YLINEN

If the nonlinear failure criterion YLINEN has been linked into the executable program, the following
input file YLINEN1.DAT will produce the subsequent output file YLINEN1.LOG:

9

File YLINEN1.DAT:

'RE' 'WE' 10000. 3000. 000. 'FC'
'RE' 'NO' 1904200. 476050. 0. 'E'
'LO' 'NO' 7929.8 792.98 0. 'P'
'AN'
'BE' 6.0
'EP' .00001
'ST'
5.25
40.
.80

File YLINEN1.LOG:

RE WE 10000.000000000 3000.000000000 0.000000000 FC
RE NO 1904200.000000000 476050.000000000 0.000000000 E
LO NO 7929.800000000 792.980000000 0.000000000 P
AN
BE 6.00000
EP 0.00001
ST
Area= 5.25000
L/r= 40.00000
Ylinen c= 0.80000
Beta= 5.91305
Beta= 3.64985
Beta= 3.49692
Beta= 3.46289
Beta= 3.46202
Beta= 3.46201
Design point:
FC X(1)=0.9961587145E+04 GAMA(1)=-.70284589633-02
E X(2)=0.2586822504E+06 GAMA(2)=-.9984373093E+00
P X(3)=0.8081998680E+04 GAMA(3)=0.5543951864E-01
Beta= 3.4620

This example illustrates the remarkable stability of the search algorithm even when the failure
criterion is highly nonlinear, and the initial guess is far from correct. Such stability is by no means
assured in all cases.

The next example is similar to the previous one except that the resistance variables are assumed to
be perfectly correlated.

Here the input file is YLINEN2.DAT and the output file is YLINEN2.LOG:

File YLINEN2.DAT:

'RE' 'WE' 10000. 3000. 000. 'FC'
'RE' 'NO' 1904200. 476050. 0. 'E'
'LO' 'NO' 7929.8 792.98 0. 'P'
'AN'
'BE' 6.0
'CO'
'RM' 1,2,1.

10

'RH' 1,3,0.
'RM' 2,3,0.
'EP' .00001
'ST'
5.25
40.
.80

Here we have specified the following correlation matrix:

by specifying the three upper triangular elements.

File YLINEN2.LOG:

RE WE 10000.000000000 3000.000000000 0.000000000 FC
RE NO 1904200.000000000 476050.000000000 0.000000000 E
LO NO 7929.800000000 792.980000000 0.000000000 P
AN
BE 6.00000
CO
RM 1 2 1.00000
RM 1 3 0.00000
RM 2 3 0.00000
EP 0.00001
ST
X(1) reset to 100.00000
Area= 5.25000
L/r= 40.00000
Ylinen c= 0.80000
Beta= 5.90325
Beta= 3.61051
Beta= 3.23928
Beta= 0.53472
Beta= 2.70554
Beta= 2.88399
Beta= 2.99032
Beta= 2.99765
Beta= 3.00000
Beta= 3.00000
Design point:
FC X(1)=0.1898752664E+04 GAMA(1)=-.9943602857E+00
E X(2)=0.4841041616E+06 GAMA(2)=-.9943602857E+00
P X(3)=0.8182098059E+04 GAMA(3)=0.1060548078E+00
Beta= 3.0000

This example illustrates what the search algorithm does when a trial value of a basic variable falls
below its prescribed lower limit X O. It resets that variable slightly above X O. Such situations
could destabilize the search loop and prevent it from terminating. If the program resets every time
through the loop, it will prompt for a new value of FACTOR after 10 successive resets (see listing
of EL2SRCH for the meaning of FACTOR). Adjusting FACTOR up or down may get the loop
unstuck.

11

Appendix B. Program Listings
RELANAL

C RELANAL

C RELIABILITY ANALYSIS PROGRAM USING EL2SRCH (EXTENDED LEVEL 2)
C

C
C B
C by subroutine FAIL
C R =Correlation matrix
C XO
C MEAN = vector of means of basic variables
C STDV = vector of std dev’s of basic variables
C

C

C

C
C DESTYP IS O-NOrmal, 1–LOgnormal, 2–Weibull, 3–GUmbel, 4–FRechet
C

C
C BETA = Reliability index
C EPS = relative error permitted in BETA or MEAN(K) at exit
C COV = Coefficient of variation of K-th distribution in DEsign mode
C PARAMS = array of values passed to and from subroutine FAIL; included
C

C
C X = vector of basic variables

C
CHARACTER*2 PROBTYP

C
C PROBTYP = ANalysis or DEsign
C

C
C CORR
C

C
C XNAME = CHARACTER*4 array of basic variable names passed to subroutine
C FAIL; included for users convenience
C
C START
C

PROGRAM RELANAL

REAL*8 B(10) ,R(10,10) ,X0(10), MEAN(10) , STDV(10)

= vector of partial derivatives of failure functicm G; calculated

= vector of lower limit values of basic variables

LOGICAL CKPR

C CKPR = Logical (Checkprinting on) used during check out

INTERGER DISTYP(10)

REAL*8 BETA,PS,COV,PARAMS(10)

REAL*8 X(10) ,GAMA(10)

C GAMA = auxiliary vector analogous to alpha

CHARACTER*1 CORR,ANS

= Yes or No (Are basic variables correlated?)

CHARACTER*4 XNAME(10)

PRINT *,'CHECKPRINT?(Y/N)'
READ 100,ANS

CKPR=.FALSE.
IF(ANS.EQ.'Y'.OR.ANS.EQ.'y') THEN

100 FORMAT(A1)

CKPR=.TRUE.
END IF

C
C INPUT
C

CALL INPT(DISTYP,PROBTYP,BETA,K,COV,EPS,N,CORR,XNAME,B,R,XO,
1MEAN,STDV,CKPR)

12

PARAMS(1)=N
C
C SEARCH LOOP
C

CALL EL2SRCH(DISTYP,PROBTYP,BETA,K,COV,EPS,N,CORR,X,GAMA,PARAMS,
1 XNAME , B ,R, XO ,MEAN,SIDV,CKPR)

C
C PRINT RESULTS
C

CALL, OUTPT(N,PROBTYP,BETA,K,X,GAMA,XNAME,MEAN)
END

INPT
C INPT

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INPUT:
All input is read from <filename>.DAT. See instructions below.

OUTPUT:
DISTYP = 0–(NOrmal, 1–WEibull, 2–LOgnormal, 3–GUmbel, 4–FRechet

BETA = Reliability index–initial guess
K
COV
EPS

PROBTYP = 'AN'alysis or 'DE'sign

= Index of element of MEAN vector which is to be adjusted in DEsign
= Coefficient, of variation of K-th distribution in DEsign mode
= relative error permitted in BETA or MEAN(K) at exit

N
CORR
XNAME
B
R
XO
MEAN
STDV
CKPR

= number of basic-variables
= 'Y'es an 'N'o (Are basic variables correlated?)
=
= vector of partial derivatives of failure function G–initial values
= Correlatian matrix
= vector of lower limit values of basic variables
= vector of means of basic variables
= vector of std dev's of basic variables

CHARACTER*4 array of basic variable names passed to subrtn FAIL

= Logical (Checkprinting on) used during check out

13

SUBROUTINE INPT(DISYP,PROBTP,BETA,K,COV,EPS,N,CORR,XNAME,
1B,R,XO,MEAN,STDV,CKPR)

INPUT SUBROUTINE

REAL*8 BETA,EPS,COV
INTERGER DISTYP(10)
cHARACTER*2 PROBTYP,WD,TP
CHARACTER*1 CORR
CHARACTER*4 XNAME(10)
CHARACTER*12 FILENAME
REAL*8 B(10),R(10,10)XO(10),MEAN(10),STDV(10)
LOGICAL CKPR

C
C WD = temp storage for char*2 input
C TP = char*2 distribution type
C FILENAME is the input and output <filename>
C
C ***

*
C ***
C * INPUT PREPERATION INSTRUCTIONS

C You MUST enter basic variables, on per card, as follows:
C <class>,<type>,<mean>,<std dev>,<min>,<name>
C where <class> is 'RE (for REsistance) or 'LO' (for LOad),
C <type> is 'NO'rmal or 'WE'ibull or 'GU'mbel or
C 'FR'echet (you must include the single quotes)
C <mean> is the mean value (REAL)
C <std dev> is the standard deviation (REAL)
C <min> is the lower limit (REAL), and

C
C Note that either commas or blanks may be used as separators.
C You may optionally specify:
C ’AN’alysis (default) or
C ’DE’sign,<K>,<COV>
C where <K> is the index of the design variable (INTEGER) and
C <COV>, is its coefficient of variation (REAL)
C ’EP’silon,<epsilon> (default is .0001)
C where <epsilon> is the relative error in MEAN(K) or BETA at
C output (REAL).
C executions, you my need to supply a smaller value of epsilon in
C order to get things started.
C vary enormously in magnitude.
C scale the basic variables so that they are of roughly similar
C magnitude (differ no more than a factor of one million).
C ’BE’ta,<beta> (default is 3.)
C where
C is the initial guess, and in DEsign mode it is the target value.
C ’IN’dependent (default) or
C ’CO’rrelated
C If COrrelated, then the upper triangular correlation matrix (above
C diagonal) must be input as follows, one per card:
C ’RM’ ,<i>,<j>,<R(i,j)>
C where ’RM’ identifies it as a correlation matrix value, and
C <i>,<j> are row an colums indices of the matrix element, and
C <R(i,j)> is the value of the matrix element
C Finally, you MUST supply the last card as follows:
C ’ST’
C in order to STart the program.
C **
C * END OF INPUT PREPARATION INSTRUCTIONS *
C **
C
C INITIALIZE AND SET DEFAULTS
C

<name> is ’RESI’stance or ’LOAD’ (used by LINFAIL)

If the search loop “converges“ after only two

This can happen if the basic variables X
In general, it is good practice to

<beta> is the reliability index (REAL). In ANalysis mode this

N=O
PROBTYP=’A'

BETA=3.
EPS=.0001

CORR='N’

C
c OPEN INPUT FILE 10 AND OUTPUT LOG FILE 11
C
100 PRINT 3000
3000 FORMAT(’ dat filename=? ’)

3001 FORMAT(A9)
READ 3001,FILENAME

LAST=MIN(LEN(FILENAME),INDEX(FILENAME,' ')-1)
IF(LAST.GT.8)THEN

PRINT *,'dat filename must not exceed 8 characters’
GO TO 100

END IF
OPEN(10,FILE=FILENAME(:LAST)//'.DAT’)

C
C NEXT OPEN OUTPUT LOG FILE
C

C
C INPUT
C

C READ CONTROL WORD
1

OPEN(11,FILE=FILENAME(:LAST)//’.LOG’)

N=1

READ(10,*,ERR=101,END=109)WD
IF(CKPR)PRINT *,WD,’ '

14

15

2 IF(WD.EQ.'ST')THEN
WRITE(11,*)WD,' '
GO TO 6

ELSE IF (WD.EQ.'LO')THEN
B(N)--1
GO TO 3

ELSE IF (WD.EQ.'RE')THEN
B(N)=1.
GO TO 3

ELSE IF (WD.EQ.'AN')THEN
WRITE(11,*)WD, ' '
PROBTYP='AN'
GO TO 1

ESLE IF (WD.EQ.'DE')THEN
PROBTYP='DE'
BACKSPACE 10
READ(10,*,ERR=102,END=109)WE,K,COV
IF(CKPR)PRINT *,WD,' ',K,' ',COV
WRITE(11,203)WD,K,COV

203 FORMAT(A3,I3,F10.5)
GO TO 1

ELSE IF(WD.EQ.'CO')THEN
CORR='Y'
WRITE(11,*)WD,' '
GO TO 5

ELSE IF(WD.EQ.'IN')THEN
CORR='N'
WRITE(11,*)WD,' '
GO TO 1

ELSE IF(WD.EQ.'EP')THEN
BACKSPACE 10
READ(10,*,ERR=103,END=109)WD,EPS
IF(CKPR)PRINT *,WD,' ',EPS
WRITE(11,204)WD,EPS

204 FORMAT(A3,F10.5)
GO TO 1

ELS IF(WD.EQ.'BE')THEN
BACKSPACE 10
READ(10,*,ERR=104,END=109)WD,BETA
IF(CKPR)PRINT *,WD,' ', BETA
WRITE(11,205)WD,BETA

205 FORMAT(A3,F10.5)
GO TO 1

ELSE
STOP 'in INPT: Unrecognizable input'

END IF
3 BACKSPACE 10

READ(10,*,ERR=105,END=109)WD,TP
IF(CKPT)PRINT *,WD,' ',TP
IF(TP.EQ.'NO')THEN

DISTYP(N)=0
GO TO 4

ELSE IF(TP.EQ.'LO')THEN
DISTYP(N)=1
GO TO 4

ELSE IF(TP.EQ.'WE')THEN
DISTYP(N)=2
GO TO 4

ELSE IF(TP.EQ.'GU')THEN
DISTYP(N)=3
GO TO 4

ELSE IF(TP.EQ.'FR')THEN
DISTYP(N)=4
GO TO 4

ELSE

END IF
4 BACKSPACE 10

READ(10 ,*,ERR=l06,END=109)WD,TP,MEAN(N),STDV(N),XO(N),XNAME(N)
IF(CKPR)PRINT *,WD,' ',TP,' ',MEAN(N),' ',STDV(N),' ',XO(N),

WRITE(1l,200)WD,TP,MEAN(N),STDV(N)XO(N),XNAME(N)

N=N+1

STOP 'in INPT: unrecognizable distribution type'

1' ',XNAME(N)

200 FORMAT(2A3,3F18.9,A5)

GO TO 1
5 READ(10,*,ERR=107,END=109)WD

IF(CKPR)PRINT *,WD,' '
IF(WD.EQ. 'RM')THEN

BACKSPACE 10

IF(CKPR)PRINT *,WD,' 'I,'J ',J,' ',R(I,J)
WRITE(11,201)WD,I,J,R(I,J)

READ(10,*,ERR=108,END109)WD,I,J,R(I,J)

201 FORMAT(A3,2I3,F10.5)
ELSE

END IF
GO TO 5

IF(CORR.EQ.'N')RETURN

R(I, I)=1.

GO TO 2

6 N=N-1

DO 7 I=1,N-1

DO 7 J=I+I,N
7 R(J,I)=R(I,J)

R(N,N)=l.
RETURN

C
101 STOP 'in INPT: Can''t read control word'J

102 STOP 'in INPT: Can''t read K,COV following ''DE'''
103 STOP 'in INPT: Can''t read EPS following ''E

J

P'
J

''
104 STOP 'in INPT: Can''t read BETA following ''BE'''
105

106 STOP 'in INPT: Can''t read data following distribution type'
107 STOP 'in INPT: Can''t read RMatrix following ''CO'''
108 STOP 'in INPT: Can''t read data following ''RM'''
109 STOP 'in INPT: Premature End-Of-File'

STOP 'in INPT: Can''t read distribution type following ''RE'' or
1''LO'''

END

EL2SRCH
C EL2SRCH

SUBROUTINE EL2SRCH(DISTYP,PROBTYP,BETA,K,COV,EPS,N,CORR,X,GAMA,
1 PARAMS,XNAME,B,R,XO,MEAN,STDV,CKPR)

C EXTENDED LEVEL 2 SEARCH ALGORITHM
C
C INPUT:
C DISTYP = O–NOrmal, 1–LOgnormal, 2–Weibull, 3–GUmbel, 4–FRechet
C PROBTYP = 'AN'alysis or 'DE'sign
C BETA
C K
C COV
C EPS
C N
C CORR
C R = Correlation matrix
C XO
C MEAN
C STDV = vector of std dev's of basic variables

= Reliability index–Initial guess (ANalysis) or target (DEsign)
= Index of element of MEAN vector which is to be adjusted in DEsign
= Coefficient of variation of K-th distribution in DEsign mode
= relative error permitted in BETA or MEAN(K) at exit
= number of basic variables
= 'Y'es or 'N'Jo (Are task variables correlated?)

= vector of lower limit values of basic variables
= vector of means of basic variables

16

C CKPR
C PARAMS = array of values passed to and from subroutine FAIL; included
C for users convenience
C XNAME = CHARACTER*4 array of basic variable names passed to subroutine
C FAIL; included for users convenience
C
C OUPUT:
C X
C GAMA = unit vector pointing to design pint in X space G
C B
C by subroutine FAIL
C BETA = Reliability index at desing point (ANalysis mode)
C MEAN = vector of means of basic variables, j-th component adjusted to
C
C

= LOgical (Checkprinting on) used during check out

= vector of basic variables, evaluated at design point

= vector of partial derivatives of failure function G; calculated

meet target beta (DEsign mode)

INTEGER DISTYP(10)
CHARACTER*2 PROBTYP
REALM BETA,COV,EPS,X(10) ,GAMA(10) ,PARAMS(10)

CHARACTER*1 CORR
REAL*8 B(10),R(10,10),XO(10),MEAN(10),STDV(10)
LOGICAL CKPR

REAL*8 G,PDFZ,CC,CDFX,PDFX,Z,OM

CHARACTER*4 XNAME(10)

C

C
C G = failure function; calculated by subroutine FAIL
C PDFZ = stardard normal pdf; used in Rackwitz-Fiessler algorithm
C CC = magnitude associated with trial vector D

C OM
C

C
C T = temp storage vector
C RFMU,RFSX = mean and std-dev vectors of Rackwitz-Fiessler Normals
C D = trial vector
C

REAL*8 INVNORM
C
C Name of double precision Function subroutine used in R-F algorithm
C

C CDFX,PDFX,Z used in Rackwitz-Fiessler algorithm
= lognormal parameter used in Rackwitz-Fiessler algorithm

REAL*8 T(10),RFMU(10),RFSX(10),D(10)

C GET D
C
C d := S b

Do 9 I=1,N
9 D(I)=RFSX(I)*B(I)

IF(CKPR)PRINT *,'D=',D
IF(CKPR)WRITE(11,*)'D=' ,D

C |c| := sqrt(d' R d)
IF(CORR.EQ.'Y') THEN

17

C INITIALIZE
C

DO 1 I=I,N
RFMU(I)=(I)
RFSX(I)=STDV(I)
IF(CKPR)PRINT *,'B=',B
IF(CKPR)WRITE(11,*)'B=',B
ICOUNT=1
FACTOR=.01

1

C
C START SEARCH LOOP
C
2 CONTINUE
C

C
C
C

200

7

C

User my need to adjust following FACTOR up or down if
program gets stuck in an infinite loop of resetting X.
FACTOR should be small but not too small.

X(I)=XO(I)+FACTOR*(MEAN(I)-XO(I))
PRINT 200,I,X(I)
WRITE(11,200)I,X(I)

IF(ICOUNT.GT.10)THEN

FORMAT(' X(',I2,') reset to ',F10.5)
ICOUNT=ICOUNT+1

PRINT *,'X has been reset 10 times with reset factor of',FA

PRINT *,'This factor should be small, but not TOO small'
PRINT *,Enter a new value (or Ctrl-C to quit): '
READ *,FACTOR
ICOUNT=1

1CTOR

END IF
END IF
CONTINUE
IF(CKPR)PRINT *,'X=',X
IF(CKPR)WRITE(11,*)'X=',X

C GET G AND B
C
C evaluate g(X) and b (partials)

CALL FAIL(X,B,G,PARAMS,XNAME)
IF(CKPR)PRINT *,'B=',B
IF(CKPR)WRITE(11,*)'B=',B
IF(CKPR)PRINT *,'G=',G
IF(CKPR)WRITE(11,*)'G=',G

C
C GET BETA OR MEAN(K)
C

IF(PROBTYP.EQ.'AN')THEN

18

DO 3 I=1,N
T(I)=0
DO 3 J=1,N

3 T(I)=T(I)+R(I,J)*D(J)
ELSE

DO 4 I=1,N
4 T(I)=D(I)

END IF
CC=0
DO 5 I=1,N

5 CC=CC+D(I)*T(I)
CC=DSQRT(CC)
IF(CKPR)PRINT *,'CC=',CC
IF(CKPR)WRITE(11,*)'CC=',CC

C
C GET ALPHA (OR GAMA)
C
C gama :=-R d/|c|

DO 6 I=1,N
6 GAMA(I)=-T(I)/CC

IF(CKPR)PRINT *,'ALPHA (or GAMMA) = ',GAMA
IF(CKPR)WRITE(11,*)'ALPHA (or GAMMA) = ',GAMA

C
C GET X
C
C X : mu + S gamma beta

DO 7I=1,N
X(I)=RFMU(I)+RFSX(I)*GAMA(I)*BETA

C IF ANY NON-NORMAL X(I) LIES OUTSIDE ITS PERMITTED RANGE,
C IT MUST BE PUT JUST ABOVE XO(I):

IF(DISTYP(I).NE.O.AND.X(I).LE.XO(I))THEN

C

201

C

202

19

beta := beta + g/|c|
BETA=BETA+G/CC
BETA=DABS(BETA)
PRINT 201,BETA
WRITE(11,201)BETA
FORMAT(' Beta=',F10.5)
IF(DABS(G/CC/BETA).LT.EPS)GO TO 11

ELSE
mu(j) :(j) -g/b(j)

MEAN(K)=MEAN(K)-G/B(K)
STDV(K)=COV*MEAN(K)
PRINT 202,K,MEAN(K),K,STDV(K)
WRITE(11,202)K,MEAN(K),K,STDV(K)
FORMAT(' Mean('K2,')=',F10.5,' Stdv(',I2,')=',F10.5)
FI(DABS(G/B(K)/MEAN(K)).LT.EPS)GO TO 11

END IF
C
C RACKWITZ-FIESSLER ALGORITHM
C

update S via Rackwitz-Fiessler C
DO 10 I=1,N
RFSX(I)=STDV(I)
RFMU(I)=MEAN(I)

C IF NORMAL, RF NOT NEEDED
IF(DISTYP(I).EQ.O.AND.CKPR)PRINT*,'Normal; RF not needed'
IF(DISTYP(I).EQ.O.AND.CKPR)WRITE(11,*)'Normal; RF not needed'
IF(DISTYP(I).EQ.O)GO TO 10

C IF LOGNORMAL, DO RF IN CLOSED FORM
IF(DISTYP(I).EQ.1)THEN

IF(CKPR)PRINT*,'Lognormal; RF in closed form'
IF(CKPR)WRITE(11,*)'Lognormal; RF in closed form'
OM=DSQRT(1.+(STDV(I)/(MEAN(I)-XO(I)))**2)
RFSX(I)=(X(I)-XO(I))*DSQRT(2.*DLOG(OM))
RFMU(I)=X(I)+(X(I)-XO(I))*DLOG((MEAN(I)-XO(I))/(X(I)-XO(I))/OM)
GO TO 10

EN IF
IF(CKPR)PRINT*,'Doing RF algorithm'
IF(CKPR)WIRTE(11,*)'Doing RF algorithm'
II=I
CALL DIST(X(I),II,DISTYP(I),CDFX,PDFX,XO,MEAN,STDV,CKPR)
IF(CDFX.EQ.1..OR.CDFX.EQ.O.)THEN

PRINT *,'R-F impossible this loop for variable',I
WRITE(11,*)'R-F impossible this loop for variable',I
GO TO 10

ELSE
Z=INVNORM(CDFX)
PDFZ=DEXP(-Z**2/2.DO)/DSQRT(6.283185307DO)
RFSX(I)=PDFZ/PDFX
RFMU(I)=X(I)-RFSX(I)*Z
FI(CKPR)PRINT *,'Z=',Z
IF(CKPR)WRITE(11,*)'Z=',Z
IF(CKPR)PRINT *,'PDFZ=',PDFZ
IF(CKPR)WRITE(11,*)'DPFZ=',PDFZ
IF(CKPR)PRINT *,'RFSX=',RFSX(I)
IF(CKPR)WRITE(11,*)'RFSX=',RFSX(I)
IF(CKPR)PRINT *,'RFMU=',RFMU(I)
IF(CKPR)WRITE(11,*)'RFMU=',RFMU(I)

END IF
10 CONTINUE
C
C END OF SEARCH LOOP
C

GO TO 2
11 RETURN

OUTPT
C OUTPT

C OUPUT SUBROUTINE
C
C INPUT:
C N
C PROBTYP = ’AN’alysis or ’DE’sign
C BETA = Reliability index
C K = Index of element of MEAN vector which is to be adjusted in DEsign
C X = vector of basic variables

C XNAME = CHAR*4 ARRAY OF BASIC VARIABLE NAMES
C MEAN

SUBROUTINE OUPUT(N,PROBTYP,BETA,K,X,GAMA,XNAME,MEAN))

= number of basic variables

C GAMA = auxiliary vector analogous to alpha

= vector of means of basic variables

C OUTPUT:
C All output is written to file <filename>.LOG
C
C ***
C * This routine prints the final values of the arrays X ad GAMA, and *

C ***
C * the final value of either BETA or MEAN(K) *

C

C

100

12

101

102

LINFAIL
C LINFAIL

C LINEAR FAILURE SURFACE. Here each XNAME(1) must be LOAD or RESI
SUBROUTINE FAIL(X,B,G,PARAMS,XNAME)

C
C INPUT:
C X
c PARAMS =
C
C XNAME =
C
C
C OUPUT:

= vector of basic variables
array of values passed to and from subroutine EL2SECH;
here PARAMS(1) is used to pass N (nr basic variables)
CHARACTER*4 array of basic variable names; used here to
distinguish between loads and resistances

20

END

C

CHARACTER*2 PROBTYP
REAL*8 BETA,X(10),GAMA(10)
CHARACTER*4 XNAME(10)
REAL*8 MEAN(10)

PRINT *,'Design point:'
WRITE(11,*)'Design point:'
DO 12 I=1,N
PRINT 100,XNAME(9),I,X(I),I,GAMA(I)
FORMAT(' ',A4,' X(',I2,')=',E16.10,' GAMA(',I2,')=',616.10)
WRITE(11,100)XNAME(I),I,X(I),I,GAMA(I)
CONTINUE
IF(PROBTYP.EQ.'AN')THEN

PRINT 101,BETA
WRITE(11,101)BETA

FORMAT(' Beta=',F7.4)
END IF
IF(PROBTYP.EQ.'DE')THEN

PRINT 102, MEAN(K)
WRITE(11,102)MEAN(K)

FORMAT(' Design Mean='E12.6)
END IF
RETURN
END

C B = vector of partial derivatives of failure function G
C G = linear failure function
C PARAMS
C

REAL*8 X(10),B(10),G
REAL*8 PARAMS(10)
CHARACTER*4 XNAME(10)

N=PARAMS(1)

DO1 I=1,N
IF(XNAME(I).EQ.’LOAD')THEN

ELSE IF(XNAME(I).EQ.’RESI’)THEN

C

G=0

B(I)=-1.

B(I)=1.

STOP ’ Variable names in LINFAIL must be ”LOAD” or '’RESI’''
ELSE

END IF
1 G=G+B(I)*X(I)

END

DIST
C DIST

C Routine to evaluate CDF ad PDF of Weibull, Gumbel, ad Frechet
C distributions
C
C INPUT:
C X = value of basic variable
C I
C J = index which indicates distritution type
C XO = array of lower limits of distributions
C MEAN = array of means of distributions
C STDV = array of stardard deviations of distributions

C
C OUTPUT:
C CDF = cumulative distribution function value
C PDF = probability density function value
C

SUBROUTINE DIST(X,I,J,CDF,PDF,XO,MEAN,STDV,CKPR)

= index of X (used with arrays XO,MEAN,STDV)

C CKPR = Logical (Checkprinting on) used during check out

REAL*8 X,CDF,PDF,ET,AG,U,Z,T,XX
REAL*8 A,DEL,PH,H,GAMA

LOGICAL CKPR
IF(J.LT.2.CR.J.GT.4)THEN

REAL*8 XO(10),MEAN(10),STDV(10)

STOP ’Wrong distritution type sent to subroutine DIST’
ELSE

GO TO (1,2,3,4),J
END IF

1 STOP ’in DIST: Weird error, impossible to be here’
C
C WEIBULL
C
C AG = shape parameter; ET = scale parmeter; XO(I) = minimum value
C
2 A=(STDV(I)/(MEAN(I)-XO(I)))**2+1.

IF(CKPR)PRINT *,’Doing Weibull’
IF(CKPR)WRITE(11,*)'Doing Weibull’
XX=X-XO(I)
IF(A.GT.2.DO)THEN

STOP ’in DIST: Weibull Std dev must not exceed Mean - Min'
END IF
AG(A-1.)**(-1./1.835)-.5

21

C
C Bifurcation root search:
C

11

12

13

C

DEL=1.
PH=0
H=GAMMA(1.D0+2.D0/AG)/GAMMA(1.D0+1.D0/AG)**2-A
IF(H*PH.GE.0)THEN

DEL=DEL/2.
GO TO 12

DEL=-DEL/2.
ELSE

END IF
AG=AG+DEL
IF(DABS(DEL/AG).LT..00005) GO TO 13
PH=H
GO TO 11

ET=(MEAN(I)-XO(I))/GAMMA(1.+1./AG)
TMP=DEXP(-(XX/ET)**AG)
CDF=1.-TMP
PDF=AG/ET*(XX/ET)**(AG-1)*TMP
IF(CKPR)PRINT *,'Weibull parameters: Scale=',ET,' Shape=',AG
IF(CKPR)WRITE(11,*)'Weibull parameters: Scale=',ET,' Shape=',AG
RETURN

INVNORM
C INVNORM

C Routine to evaluate Inverse Normal CDF
C
C Uses Hastings polynomial 26.2.23 of "Handbook of Mathematical
C Functions", 1972, M.Abramowitz and I.A.Stegun &., AMS.55, Natl.
C Bur. Stds, U.S. Dept. of Commerce
C
C Absolute error < 0.0004
C

FUNCTION INVNORM(F)

REAM*8 F,T,Y,INVNORM
IF(F.LT..5)THEN

ELSE
T=DSQRT(DLOG(1/F**2))

22

C GUMBEL
C
3 AG=3.141592654/DSQRT(6D0)/STDV(I)

IF(CKPR)PRINT *,'Doing Gumbel'
IF(CKPR)WRITE(11,*)'Doing Gumbel'
U=MEAN(I)-.57722/AG
XX=X
T=TEXP(-AG*(XX-U))
CDF=DEXP(-T)
PDF=AG*T*CDF
RETURN

C
C FRECHET
C
4 AG=2.33/(STDV(I)/MEAN(I))**.6770001

IF(CKPR)PRINT *,'Doing Frechet
IF(CKPR)WRITE(11,*)'Doing Frechet'
U=MEAN(I)/GAMMA(1.-1./AG)
XX=X
CDF=DEXP(-(U/XX)**AG)
PDF=CDF*AG/U*(U/XX)**(AG+1.)
RETURN
END

YLINEN
C YLINEN

C Ylinen's column failure criterion
C
C INPUT:
C X = vector of basic variables
C PARAMS see below
C XNAME See below
C
C OUTPUT:
C B = vector of partial derivatives of failure function G
C G = Ylinen failure function
C PARAMS see below
C XNAME see below

SUBROUTINE FAIL(X,B,G,PARAMS,XNAME)

23

T=DSQRT(DLOG(1/(1-F)**2))
END IF
Y=.001308*T+.189269)*T+1.432788)*T+1
Y=T-((.010328*T+.802853)*T+2.515517)/Y
IF(F.LT..5)THEN

INVNORM=-Y
ELSE

INVNORM=Y
END IF
RETURN
END

GAMMA
C GAMMA

FUNCTION GAMMA(X)
C Computes GAMMA(X), WHERE GAMMA(X+1)!' GAMMA(X)=(X-1)!
C
C Uses Hastings polynomial 6.1.36 of "Handbook of Mathematical
C Functions", 1972, M.Abramowitz and I.A.Stegun eds., AMS.55, Natl.
C Bur. Stds, U.S. Dept. of commerce
C

REAL*8 X,GAMMA,GMH,Y
C
C GMH(Y) is a Hastings polynomial for GAMMA(1.+Y)
C

GMH(Y)=1.+Y*(-0577191652D0+*(0.9878205891D0+Y*(-0897056937D0
1 +Y*(0.918206857D0+Y*(0.765704078D0+Y*(0.482199394D0
2 +Y*(-0.193527818D0+Y*(0.035868343D0)))))))
IF(X.LE.0)THEN

GAMMA=0
RETURN

ELSE IF(X.GE.1.DO)THEN
GO TO 1

ELSE
GAMMA=GMH(X)/X
RETURN

END IF
1 IF(X.GT.2.DO)GO TO 2

GAMMA=GMH(X-1.)
RETURN

2 N=IDIDNT(X-1.D0)
FN=N
GAMMA=GMH(X-FN-1.)
DO 3 I+1,N
FI=I

3 GAMMA=GAMMA*(X-FN-1.+FI)
END

C
C PARAMS = array of values passed to and from subroutine EL2SRCH:
C
C
C
C
C
C XNAME = CHARACTER*4 array of basic variable names; used here to
C
C

here PARAMS(1) is used to pass N (nr basic variables)
PARAMS(2) passes the cross sectional area
PARAMS(3) passes the L/r slenderness ratio
PARAMS(4) passes the parmeter c
and PARAMS(5) passes 0. (first call) or 1. (Subsequent call).

distinguish strength 'FC', modulus 'E', and load 'P'.

REAL*8 X(10),B(10),G,A,LR,U,V,R

CHARACTER*4 XNAME(10)
IF(PARMAS(5).EQ.O)THEN

READ(10,*)PARAMS(2)

WRITE(11,200)PARAMS(2)

PRINT 200,PARAMS(2)

REAL*8 PARAMS(10),FC,E,P

PRAMS(5)=1.

READ(10,*)PARAMS(3)
READ(10,*)PARAMS(4)

200 FORMAT(' Area=',F10.5)

WRITE(11,20l)PARAMS(3)

PRINT 201,PARAMS(3)
WRITE(11,202)PARAMS(4)

201 FORMAT(' L/r=' ,F10.5)

202 FORMAT(' Ylinen c=',F10.5)
PRINT 202,PARAMS(4)

ELSE IF(PARAMS(5).EQ.1.)THEN

ELSE

END IF
A=PARAMS(2)

CONTINUE

STOP 'Illegal call to YLINEN'

LR=PARAMS(3)
C=PARAMS(4)
BB=3.141592654**2*A/LR**2
N=PARAMS(1)
DO 1 I=1,N
IF(XNAME(1).EQ.'FC')THEN

FC=X(1)
IFC=I

ELSE IF(XNAME(I).Eq.'E')THEN
E=X(I)

P=X(I)

IE=I
ELSE IF(XNAME(I).EQ.'P')THEN

B(I)=-1.
ELSE

END IF

U=(A*FC+BB*E)/2./C
V=A*FC*BB+E/C

STOP 'Wrong variable names in YLINEN'

1 CONTINUE

R=DSQRT(U**2-V)
G=U-R-P
B(IFC)=(1. -U/R+BB*E/R)*A/2./C
B(I E) = (1. -U/R+A*FC/R)*BB/2./C
END

24

Appendix C. Error Messages
Error messages are shown in typewriter font followed by an explanation where necessary.

INPT
dat filename must not exceed 8 characters

When entering the input/output filename, you do not include the extension .dat, and
DOS does not accept filenames longer than 8 characters.

in INPT: Unrecognizable input
in INPT: Unrecognizable distribution type
in INPT: Cannot read control word
in INPT: Cannot read K,COV following ’DE’
in INPT: Cannot read EPS following ’EP’
in INPT: Cannot read BETA following ’BE’
in INPT: Cannot read distribution type following ’RE' or ’LO'
in INPT:
in INPT: Cannot read RMatrix following ’CO’
in INPT: Cannot read data following ’RM’
in INPT: Premature End-Of-File

Cannot read data following distribution type

EL2SRCH
X(i) reset to <number>

The search loop has produced a trial value for X(i) that is below its prescribed lower
limit. Therefore the value of X(i) has been reset to a value slightly larger than the lower
limit. If the program gets stuck in an infinite loop of resetting X(i), the user may need to
adjust FACTOR up or down (see listing for meaning of FACTOR). After 10 successive
resets, the program prompts for a new value of FACTOR.

Subroutine DIST has returned a value of 0.0 or 1.0 for the CDF of non-normal variable
<i>. In such cases, it is impossible to perform the Rackwitz-Fiessler algorithm on that
variable, and the values from the previous loop are retained. This is harmless, so long as
the loop converges and the final few loops do not contain this message.

R-F impossible this loop for variable <i>

DIST
Wrong distribution type sent to subroutine DIST
in DIST: Weibull Std dev must not exceed Mean-Min

YLINEN
Illegal call to YLINEN

Wrong variable names in YLINEN
PARAMS(5) must be 0 or 1 when calling YLINEN.

Meaningful variable names are 'FC' , 'P' , and E'.

LINFAIL
Variable names in LINFAIL must be LOAD or RESI

25

