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28 September 2019

My thoughts on wood load-time factors -- Joe Murphy

A safety checking equation is a linear combination of (nominal) numbers separated using
factors.

Different safety equations or different formats are different linear combinations of
nominals and factors.

A strict conversion from one format to another does not change reliability.

ASD considers the 5th-percentile of the resistance distribution along with the load
nominals in the safety equation.

Products with the same 5th-percentile are considered equal. Products must meet a minimum
5th-percetile value determined by the safety checking equation.

In ASD the 5th-percentile value is the metric to compare products and safety.

Reliability analysis takes into account variability in loads and resistance.
Reliability analysis uses load and resistance distributions.
Reliability analysis can be applied to any safety checking equation.
The linear combination of nominals and factors separate distributions.

Reliability analysis yields a reliability index 

Different methods of reliability analyses produce different reliability indices.

Reliability-based LRFD considers the resistance distribution along with the load
distributions and the safety checking equation.

Products with the same reliability index  are considered equal. Products must meet a

minimum  value determined by reliability analysis.

In reliability-based LRFD the  value is the metric to compare products and safety.

Adjustment factors for design values.

Typically in research, one takes two samples of wood product (doing everything possible to
make sure the two samples are identical in sample size and strength distribution).
Then one sample is the "control" sample and the other is treated in the generic sense and
is the "treated" sample. Both control and treated samples are tested and the means of the
tests are calculated and compared using e.g., Student's t-test.

If the difference is considered significant the ratio of treated mean to control mean is
considered an adjustment factor and is applied to every percentile of the distribution.
The mean-to-5th-percentile ratio and the coefficient of variation is the same for both a
treated distribution and a nontreated distribution. See pages 23-26.

In reliability analyses all adjustments are considered to have been applied to the
resistance distribution, .

Load-time factors.

70 years ago Lyman W. Wood conducted research, pages 13-22, where he estimated wood
strength of small clear wood specimens and applied a load less than the estimated
strength. This produced a curve, Figure 1, with increasing time-to-failure the lower the
ratio of stress-to-strength. This stress-to-strength ratio is a load-time factor.

The load-time factor was applied to the 5th-percentile used in ASD, pages 27-30.

If the live load is the predominant load, e.g., live load nominal is 3 times dead load
nominal, then, by consensus, the duration of the sum of load nominals was thought not to
exceed 10 years over a 50 year lifetime period. To prevent static fatigue, in this load
case, the stress ratio, i.e., load-time factor, on the resistance 5th-percentile was made

 according to Wood's curve, page 4, and ASD, page 27. Using the same logic and

consensus, durations and load-time factors were assigned to other predominant load cases.

β

β

β
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Take Wood's Figure 1 and put the independent variable on the horizontal axis, page 4. Now
take a distribution of strength. Applying a load, the 5th-percentile's stress ratio would
give an acceptable estimated duration for that load over a 50 year lifetime. Strength
values greater than the 5th have stress ratios less than the 5th, and that load would last
longer, and perhaps much longer, than the 5th. Consider the mean of the strength
distribution which might be 1.5 times the 5th. The stress ratio of the mean would be 67%
of the 5th-percentile stress ratio.

Because the load-time factor, as applied to the 5th-percentile, cannot be applied to the
mean (or other percentiles), the load-time factor cannot be considered an adjustment factor.

I consider the load-time factor to be a separation factor. As the load-time factor
decreases the resistance 5th-percentile separates farther from the ASD load nominals and
the resistance distribution separates farther from the load distributions in
reliability-based LRFD. See page 5.

A change in the load-time factor changes the reliability and reliability index. A decrease
in the load-time factor decreases the stress ratio and increases the reliability and the
reliability index.

Excluding the load-time factor from the safety checking equation means that the calculated
reliability index is the same no matter the numerical value of the load-time factor. And
the resistance distribution does not separate farther from the load distributions with a
decrease in load-time factor.

With an appropriate low load-time factor, an exceedingly small percentage will have a high
enough stress ratio to fail by static fatigue (compared to overload), which is witnessed
by historic observation.

 

On pages 6-8 the reliability index is calculated 5 different ways. The reliability indices are
calculated in tables for the: 1) LRFD safety checking equation, , reliability-based; 2) LRFD
safety checking equation, , format conversion, and; 3) ASD safety checking equation.

Page 7 has the three tables with the load-time factors considered as separation factors.

Page 8 has the three tables with the load-time factors considered as adjustment factors (i.e.,
not in the safety checking equation.)

KR
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6 September 2019

Five Reliability Index Comparisons by Joe Murphy

The  I use is the fifth percentile of the initial strength distribution. I also use the
following statistics. The load statistics come from NBS Special Publication 577. The coefficient of
variations, s, for resistance come from the 2010 Wood Handbook Table 5-6 for clear wood.

Distribution
Name

Load
Distribution

Dead normal 1.05 0.10

Live Gumbel I 1.00 0.25

Snow Frechet II 0.82 0.26

Wind Gumbel I 0.78 0.37

Distribution
Name

Resistance
Distribution

R_Compression || Weibull III 1.472 0.18

R_Bending Weibull III 1.403 0.16

R_Tension || Weibull III 1.756 0.25

R_Shear || Weibull III 1.339 0.14

I calculate the following expected values and variances, s:

 and 

and define

Each cell on the next two pages contain 5 s, and  when . The 5 s are:

   

   

   

The s are calculated:

 where  are independent random variables. Distribution

types not needed.

, uses the Advanced First-Order Second-Moment, AFOSM, reliability procedure used in NBS SP 577
and NBS577js.html Specified distribution types.

 were derived using 100,000 Monte Carlo simulations of the random variables (with specified

distribution types) to produce a  distribution of 

 where  is the inverse CDF of the standardized normal distribution.

        should calculate to the same value.
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6 September 2019

ASTM D5457 test based Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 test based Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 test based Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 test based Reliability Index (FOSM/AFOSM/Monte Carlo)

2-P Weibull
 

⇓ Loads,  ⇓

Compression Bending Tension Shear
Nominal Safety checking equation
Include load-time factors

 3.60 5.22
 3.19 2.091
 3.19 3.60

4.07 5.79
3.48 2.232
3.48 4.05

3.04 5.37
3.08 2.536
3.07 3.03

4.48 6.05
3.67 2.222
3.60 4.49

 3.02 3.44
 2.74 6.720
 2.68 3.01

3.38 3.70
2.96 7.174
2.88 3.36

2.81 4.04
2.80 8.152
2.74 2.80

3.59 3.68
3.05 7.143
2.93 3.58

 3.37 4.02
 3.07 6.720
 2.87 3.36

3.78 4.31
3.26 7.174
3.09 3.80

2.97 4.52
3.04 8.152
2.93 2.97

4.07 4.33
3.25 7.143
3.09 4.08

 1.68 1.67
 1.67 2.867
 1.59 1.68

1.86 1.80
1.82 3.061
1.71 1.86

2.14 2.53
2.10 3.478
2.04 2.14

1.80 1.69
1.76 3.048
1.64 1.79

 

ASTM D5457 format conversion Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 format conversion Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 format conversion Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 format conversion Reliability Index (FOSM/AFOSM/Monte Carlo)

2-P Weibull
 
 

⇓ Loads,  ⇓

Compression

ASTM = 1.9 

Bending

2.1

Tension

2.1

Shear

2.1

Nominal Safety checking equation
Include load-time factors

 3.56 5.13
 3.16 2.052
 3.19 3.58

4.10 5.88
3.51 2.270
3.57 4.09

2.93 4.95
2.93 2.269
3.00 2.94

4.54 6.18
3.72 2.269
3.75 4.53

 2.97 3.37
 2.70 6.597
 2.64 2.98

3.43 3.77
3.00 7.295
2.92 3.44

2.66 3.69
2.63 7.292
2.61 2.66

3.66 3.77
3.10 7.292
3.04 3.64

 3.33 3.95
 3.03 6.597
 2.87 3.34

3.82 4.38
3.29 7.295
3.08 3.82

2.85 4.16
2.89 7.292
2.79 2.86

4.13 4.41
3.29 7.292
3.11 4.15

 1.62 1.61
 1.62 2.815
 1.52 1.61

1.93 1.87
1.86 3.113
1.77 1.93

1.92 2.20
1.90 3.111
1.84 1.92

1.88 1.76
1.82 3.111
1.74 1.89

 

ASD format Reliability Index (FOSM/AFOSM/Monte Carlo)ASD format Reliability Index (FOSM/AFOSM/Monte Carlo)ASD format Reliability Index (FOSM/AFOSM/Monte Carlo)ASD format Reliability Index (FOSM/AFOSM/Monte Carlo)

2-P Weibull

⇓ Loads,  ⇓

Compression

ASTM = 1.9 

Bending

2.1

Tension

2.1

Shear

2.1

Nominal Safety checking equation
Include load-time factors

 3.62 5.27
 3.21 2.111
 3.23 3.61

4.16 6.03
3.57 2.333
3.62 4.15

2.96 5.06
2.97 2.333
2.97 2.97

4.61 6.34
3.78 2.333
3.85 4.62

 3.32 3.91
 2.98 7.600
 2.95 3.31

3.81 4.34
3.30 8.400
3.26 3.81

2.84 4.14
2.84 8.400
2.83 2.85

4.12 4.37
3.43 8.400
3.34 4.11

 3.33 3.95
 3.04 6.609
 2.88 3.33

3.82 4.39
3.29 7.304
3.07 3.81

2.85 4.17
2.89 7.304
2.76 2.86

4.14 4.42
3.30 7.304
3.16 4.15

 1.36 1.35
 1.41 2.612
 1.32 1.35

1.65 1.59
1.65 2.887
1.55 1.65

1.76 1.98
1.75 2.887
1.68 1.76

1.57 1.48
1.59 2.887
1.48 1.57

β

λ

C = 0.18VR

= 0.90ϕ s
= 1.24KR

0.16
0.85
1.23

0.25
0.80
1.15

0.14
0.75
1.40

1.4 D, 0.6  [λ    ] ≥ 1.4 ϕ s KR R05 Dn

1.2 D + 1.6 L, 0.8  [λ    ] ≥ 1.2  + 1.6  ,   = 3ϕ s KR R05 Dn Ln
Ln
Dn

1.2 D + 1.6 S, 0.8  [λ    ] ≥ 1.2  + 1.6  ,   = 3ϕ s KR R05 Dn Sn
Sn
Dn

1.2 D + 1.0 W, 1.0  [λ    ] ≥ 1.2  + 1.0  ,   = 2ϕ s KR R05 Dn Wn
Wn

Dn

β

λ

 C = 0.18VR

= 0.90ϕ s
= 2.40KF

0.16
0.85
2.54

0.25
0.80
2.70

0.14
0.75
2.88

1.4 D, 0.6  [λ    ] ≥ 1.4 ϕ s KF
R05

ASTM
Dn

1.2 D + 1.6 L, 0.8  [λ    ] ≥ 1.2  + 1.6  ,   = 3ϕ s KF
R05

ASTM
Dn Ln

Ln
Dn

1.2 D + 1.6 S, 0.8  [λ    ] ≥ 1.2  + 1.6  ,   = 3ϕ s KF
R05

ASTM
Dn Sn

Sn
Dn

1.2 D + 1.0 W, 1.0  [λ    ] ≥ 1.2  + 1.0  ,   = 2ϕ s KF
R05

ASTM
Dn Wn

Wn

Dn

β

CD

C = 0.18VR 0.16 0.25 0.14

D, 0.9   [   ] ≥CD
R05

ASTM
Dn

D + L, 1.0   [   ] ≥ + ,   = 3CD
R05

ASTM
Dn Ln

Ln
Dn

D + S, 1.15 [   ] ≥ + ,   = 3CD
R05

ASTM
Dn Sn

Sn
Dn

D + 0.6 W, 1.6   [   ] ≥ + 0.6  ,   = 2CD
R05

ASTM
Dn Wn

Wn

Dn
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6 September 2019

ASTM D5457 test based Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 test based Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 test based Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 test based Reliability Index (FOSM/AFOSM/Monte Carlo)

2-P Weibull
 

⇓ Loads ⇓

Compression Bending Tension Shear
Nominal Safety checking equation
Exclude load-time factors

 2.28 2.74
 2.08 1.254
 2.08 2.29

2.60 3.08
2.31 1.339
2.29 2.59

2.40 3.47
2.32 1.522
2.30 2.39

2.71 3.08
2.37 1.333
2.37 2.72

 2.39 2.58
 2.24 5.376
 2.15 2.38

2.68 2.79
2.43 5.739
2.33 2.66

2.50 3.33
2.46 6.522
2.41 2.50

2.74 2.72
2.46 5.714
2.36 2.74

 2.81 3.15
 2.62 5.376
 2.44 2.80

3.15 3.40
2.81 5.739
2.62 3.17

2.71 3.81
2.73 6.522
2.61 2.70

3.31 3.36
2.80 5.714
2.62 3.31

 1.68 1.67
 1.67 2.867
 1.59 1.68

1.86 1.80
1.82 3.061
1.71 1.86

2.14 2.53
2.10 3.478
2.04 2.14

1.80 1.69
1.76 3.048
1.64 1.79

 

ASTM D5457 format conversion Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 format conversion Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 format conversion Reliability Index (FOSM/AFOSM/Monte Carlo)ASTM D5457 format conversion Reliability Index (FOSM/AFOSM/Monte Carlo)

2-P Weibull
 
 

⇓ Loads ⇓

Compression

ASTM = 1.9 

Bending

2.1

Tension

2.1

Shear

2.1

Nominal Safety checking equation
Exclude load-time factors

 2.22 2.65
 2.03 1.231
 2.03 2.24

2.66 3.17
2.35 1.362
2.33 2.66

2.21 3.06
2.12 1.361
2.13 2.22

2.80 3.20
2.43 1.361
2.41 2.79

 2.34 2.51
 2.19 5.278
 2.12 2.34

2.73 2.86
2.47 5.836
2.38 2.74

2.32 2.97
2.28 5.833
2.24 2.32

2.83 2.81
2.51 5.833
2.43 2.82

 2.76 3.08
 2.58 5.278
 2.41 2.77

3.20 3.47
2.84 5.836
2.66 3.20

2.55 3.45
2.56 5.833
2.47 2.56

3.38 3.45
2.84 5.833
2.67 3.40

 1.62 1.61
 1.62 2.815
 1.52 1.61

1.93 1.87
1.86 3.113
1.77 1.93

1.92 2.20
1.90 3.111
1.84 1.92

1.88 1.76
1.82 3.111
1.74 1.89

 

ASD format Reliability Index (FOSM/AFOSM/Monte Carlo)ASD format Reliability Index (FOSM/AFOSM/Monte Carlo)ASD format Reliability Index (FOSM/AFOSM/Monte Carlo)ASD format Reliability Index (FOSM/AFOSM/Monte Carlo)

2-P Weibull

⇓ Loads ⇓

Compression

ASTM = 1.9 

Bending

2.1

Tension

2.1

Shear

2.1

Nominal Safety checking equation
Exclude load-time factors

 2.11 2.48
 1.93 1.188
 1.93 2.10

2.53 2.97
2.25 1.312
2.24 2.53

2.14 2.92
2.05 1.312
2.07 2.15

2.64 2.99
2.32 1.312
2.33 2.64

 2.00 2.10
 1.93 4.750
 1.84 2.00

2.37 2.43
2.20 5.250
2.10 2.37

2.13 2.63
2.09 5.250
2.06 2.14

2.40 2.36
2.21 5.250
2.10 2.40

 2.46 2.67
 2.35 4.750
 2.18 2.46

2.87 3.03
2.61 5.250
2.42 2.86

2.38 3.11
2.39 5.250
2.28 2.39

2.99 3.00
2.60 5.250
2.45 3.00

 1.36 1.35
 1.41 2.612
 1.32 1.35

1.65 1.59
1.65 2.887
1.55 1.65

1.76 1.98
1.75 2.887
1.68 1.76

1.57 1.48
1.59 2.887
1.48 1.57

β
C = 0.18VR

= 0.90ϕ s
= 1.24KR
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0.80
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0.75
1.40

1.4 D  [    ] ≥ 1.4 ϕ s KR R05 Dn

1.2 D + 1.6 L  [    ] ≥ 1.2  + 1.6  ,   = 3ϕ s KR R05 Dn Ln
Ln
Dn

1.2 D + 1.6 S  [    ] ≥ 1.2  + 1.6  ,   = 3ϕ s KR R05 Dn Sn
Sn
Dn

1.2 D + 1.0 W  [    ] ≥ 1.2  + 1.0  ,   = 2ϕ s KR R05 Dn Wn
Wn

Dn

β
 C = 0.18VR

= 0.90ϕ s
= 2.40KF

0.16
0.85
2.54

0.25
0.80
2.70

0.14
0.75
2.88

1.4 D  [    ] ≥ 1.4 ϕ s KF
R05

ASTM
Dn

1.2 D + 1.6 L  [    ] ≥ 1.2  + 1.6  ,   = 3ϕ s KF
R05

ASTM
Dn Ln

Ln
Dn

1.2 D + 1.6 S  [    ] ≥ 1.2  + 1.6  ,   = 3ϕ s KF
R05

ASTM
Dn Sn

Sn
Dn

1.2 D + 1.0 W  [    ] ≥ 1.2  + 1.0  ,   = 2ϕ s KF
R05

ASTM
Dn Wn

Wn

Dn

β
C = 0.18VR 0.16 0.25 0.14
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R05

ASTM
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R05

ASTM
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Dn
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R05

ASTM
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Sn
Dn

D + 0.6 W [ 1.6 ] ≥ + 0.6  ,   = 2
R05

ASTM
Dn Wn

Wn

Dn
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We define the random variable  as: 

Where  is the resistance effect random variable and  is the loads effect random variable (sum

of a number of load effect random variables, e.g.,  .)

From statistics we can add the expected values: 

If the variables are independent of each other, we can add the variances: 

The First-Order Second-Moment reliability index, , is:   

 when calculated using distribution parameters.  when calculated using Monte

Carlo sampling.  will be slightly less than  because in my Monte Carlo the loads are not
allowed to go negative, biasing the loads slightly higher.

Note that the FOSM reliability index (  ) is valid for any distribution type when calculated

using distribution parameters. It (  ) only uses the means and variances of the distributions!

In simulation studies, variable values are chosen at random from the distributions (e.g., Monte
Carlo).  are calculated. The probability of  is tabulated:

 is referred to as probability of failure .

One can then define a reliability index for simulation, , as:

 where  is the inverse CDF of the standardized normal distribution.

 

But   except in the very rare case that  is normally distributed.

g g = R − Q

R Q
Q = D + X

= −ḡ R̄̄ Q̄̄̄

= +Vg VR VQ

β FOSM = =β FOSM
ḡ

 Vg
−−−√

−R̄̄ Q̄̄̄

  +  VR VQ
− −−−−−−−√

=βFOSM β1 =βFOSM β5

β5 β1

β1

β1

andḡ Vg g ≤ 0

Prob[ g ≤ 0 ] p f

 ( =  )β Simulated β4

=β Simulated Φ −1( 1 −  )p f ()Φ −1

≠β Simulated β FOSM g

FAILURE  RELIABILITY

0 g
_

g

βFOSM √
___
 Vg

g ≤ 0
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The limit state equation is  In simulation studies, variable values are chosen at

random from the distributions  (e.g., Monte Carlo) and the sample mean  and sample

variance  are calculated. The probability of failure,  is  and is the :

One can then define a reliability index, , using the sample mean and variance:  / .

One can also define a reliability index, , using probability of failure or the cdf of g:

 where  is the inverse CDF of the standard normal distribution.

If one transforms the  distribution into standard normal variates,  /  one gets

the relationship  This relationship is shown in the above plotted example.

g = R − (D + X)
R, D, and X ḡ

Vg p f Prob[ g ≤ 0 ] cd (0)fg

β5 =β5 ḡ Vg

−−√
β4

− =β4 Φ −1( ) =p f Φ −1(cd (0))fg ()Φ −1

g = ( − )hi gi ḡ Vg

−−√
− =β4 Φ −1( cd ( − ) )fh β5

-6 -5 -4 -3 -2 -1 0 1 2 3 4
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5

( gi - g )  /  √ Vg
_         ___

gi = 0,  - β5

- β4

gi = g
_

Standard Normal Variate

no
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 s
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re

s
Normal Probability Plot -- Monte Carlo Reliability Results, gi -- β4 and β5

skewness = ∑ hi
3 / N = -0.454
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22 September 2019
A possible future direction -- Joe Murphy

ASD and LRFD load-time factorsASD and LRFD load-time factorsASD and LRFD load-time factorsASD and LRFD load-time factors

Harmonize the LRFD load-time factors the same as historically successful ASD, e.g., ,

ASD and LRFD load-time factors

Factor 50 yrs 10 yrs 1 mos 7 days 10 min

0.90 1.00 1.15 1.25 1.60

0.56 0.62 0.72 0.78 1.00

This harmonization leads to simple development of the D5457 format conversion factor  and
the D5457 reliability normalization factor  as follows.

D5457 format conversion factor, D5457 format conversion factor, D5457 format conversion factor, D5457 format conversion factor, 

Calculate the format conversion factor, , using the live load case with 

. With format conversion  and 

This yields same size members in both ASD and D5457 format conversion for this case.

D5457 reliability normalization factor, D5457 reliability normalization factor, D5457 reliability normalization factor, D5457 reliability normalization factor, 

For D5457 reliability normalization factor, , use the same live load case with . The

safety checking equation is

Develop  so that there is a constant reliability index  for bending with coefficients of

variation  from  (2p Weibull resistance distribution) and 

The following table gives the reliability index  for four stress modes. The reliability index
was calculated using the advanced first-order second-moment AFOSM methodology used in NBS SP 577
and NBS577js.html

Reliability index, 

1.696 1.592 1.408 1.212 1.029

0.10 0.15 0.20 0.25 0.30

Compression 0.90 2.81 2.86 2.90 2.92 2.93

Bending 0.85 3.00 3.00 3.00 3.00 3.00

Tension 0.80 3.20 3.14 3.10 3.08 3.07

Shear 0.75 3.40 3.28 3.21 3.17 3.14

Note that in the table the reliability index  goes up as the resistance factor  goes down

which reflects the  relationship.

λ = /1.6CD

CD

λ = /1.6CD

KF

KR

KF

KF / = 3Ln Dn

= = 1.5
 λ    /ASTMϕs KF R05conv

  /ASTMCD R05asd

1.2(1) + 1.6(3)

1 + 3
=R05conv R05asd =KF

2.4

ϕs

KR

KR / = 3Ln Dn

 λ    = 1.2(1) + 1.6(3) = 6ϕs KR R05lrfd

KR β = 3
CVR 0.1 to 0.3 = 0.85, λ = 0.62ϕs

β3

β3

KR

     \    Cϕs VR

β ϕs

β − ϕ
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28 September 2019

More thoughts on reliability-based design -- Joe Murphy

Short term strength distribution is independent of future applied loads, thus the summing
of variances in FOSM is statistically correct.

The ASD load-time factors have consensus time spans for the primary load in specific load
combinations for the 5th-percentile. Say 1 month for snow load.

The ASD safety format can be considered a special case of the LRFD safety format with the
Load and Resistance Factors all equal to .

The wood community has calculated reliability index using AFOSM, excluding load-time

factors, getting  .

The steel community calculates reliability index using FOSM (not AFOSM) getting  .

 expanded (page 6) is:

The reliability index using FOSM  expanded (page 6) is:

 calculation is simple, using only basic distribution statistics and the requirement
that applied loads are independent from short-term strength. Pages 23-26.

 calculations are straight forward equations and algebra.

For large  because  not only increases the numerator but also decreases the

denominator in the  equation.

The difference in  is due to the skewness of the g distribution from the Monte

Carlo simulation. The more negative the skewness the more 

The live load combination is being considered as the Standard load case with a target

reliability index .

Calculation of the format conversion factor, , can be simply ratio-ing the safety
checking equations of the different formats.

Format conversion does not change reliability.

AFOSM provides a simple way to develop the reliability normalization factor, , using the
"Design" option in NBS577js.html The "Design" option basically does multiple "Analysis"es
until the program converges to the target reliability index. Developing  would be more
difficult using Monte Carlo simulations.

Different resistance factors s express different reliability indices which may be
warranted for different stress modes.

Constant reliability (index) for all stress modes requires the same resistance factor 
for all stress modes in reliability-based LRFD.

Include load-time factors when doing AFOSM or other reliability analyses.

1

= 2.4β3

= 3.0β2

β2

= =β2

ln(  /  )R¯̄ Q¯̄̄

 C + CV 2
R V 2

Q

− −−−−−−−−−√
ln( ) − ln( + )R¯̄ D¯̄̄ X¯̄

  +
VR

R¯̄
2

+VD VX

( + )D¯̄̄ X¯̄̄
2

− −−−−−−−−−−√
β1

= =β1
−R¯̄ Q¯̄̄

  +  VR VQ
− −−−−−−−√

− ( + )R¯̄ D¯̄̄ X¯̄

  + (  +  ) VR VD VX
− −−−−−−−−−−−−−−√

β1

andβ1 β2

,     >  R¯̄ β2 β1 R¯̄

β2

andβ4 β5

  <  β4 β5

β = 3

KF

KR

KR

ϕs

ϕs
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RELATION OF STRENGTH OF WOOD TO DURATION OF LOAD

By

LYMAN W. WOOD, Engineer

Forest Products Laboratory,-
l Forest Service

U. S. Department of Agriculture

Summary

This report presents, for the use of structural engineers, a mathematical
expression for an important structural property of wood, the relation of its
bending strength to the duration of load. The relationship is mathematically
defined, and applications in working-stress problems are shown. Structural
designers are thus enabled to take full advantage of the unusually high bend-
ing strength of wood under short-time loading.

Data showing the relationship are from recently completed tests of small,
clear Douglas-fir beams under long-time load and from earlier studies of
rapid loading and impact. An empirical hyperbolic equation is developed to
represent the trends of the data. A few exploratory tests of other species
and in other strength properties indicate that the relationship may be of
general application.

Introduction- -

Designing engineers customarily set working stresses for structural materials
at levels below the yield point, or elastic limit, to insure safe and satis-
factory structures under service loading. They recognize that materials
loaded beyond the elastic limit may lose elasticity and take on characteris-
tics of brittleness or plasticity, according to their nature. It is less
generally known that materials differ widely in this respect, and that in
some the strength properties are greatly affected by the duration of load-
ing. Wood has a property valuable to the structural designer in that both
its elastic limit and its ultimate strength are higher under short-time than
under long-time loading; this permits higher working stresses where live loads
of comparatively short duration must be considered in structural design,

-
1
Maintained at Madison, Wis. , in cooperation with the University of Wisconsin.

Rept. No. 1916 -1- Agriculture-Madison
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The relation of the strength of wood to the duration of load has been in-
vestigated at the Forest Products Laboratory for many years, Recent analysis
of duration data from a series of long-time loading tests of small, clear
Douglas-fir beams led to a restudy of the relation of duration of load to
the strength of wood and a revision of conclusions previously held. This
paper summarizes the data considered in the restudy and reports the con-
clusions reached.

Data considered here are from bending tests of Douglas-fir at two levels of
moisture content, both in the air-dry range. The conclusions cannot yet be
extended to other species and strength properties or to wood in the green
condition, although a few exploratory tests indicate that bending and other
strength properties in some other species are similarly affected.
general application of the conclusions is subject to revision

Any
as more

complete information is obtained.

Sources of Data

A series of 126 long-time loading tests of l- by l-inch, clear Douglas-fir
beams at 6 and 12 percent moisture content was begun in 1943 and is now
approaching completion. Test specimens were subjected to constant la-ads
ranging from 60 to 95 percent of the loads that caused failure of matched
control specimens in a standard static-bending test of about 5 minutes'
duration. Durations until failure under these loads ranged from a few
minutes to more than 5 years, Figure 1 shows durations plotted against
stress levels corresponding to the applied loads in each of the tests.
Duration values are shown on a logarithmic scale,

studies of the effects of rapid rates of loading on small, clear Douglas-fir

beams were reported by Liska2. Data from that report and a line showing
their trend are plotted in figure 2. The time scale is logarithmic. The
data of figure l and figure 2 are not exactly comparable, since figure 1.
shows durations of stress increasing to predetermined levels and then held
constant, while figure 2 shows times of loading continuously increasing at
a constant rate until failure. Nevertheless, it is believed that both sets
of data are governed by the same properties of the material and should be
represented by one continuous curve.

Impact tests, in which the actual forces or loads were observed, were re-

ported by Elmendorf3. The data indicated that the modulus of rupture of
Douglas-fir is about 75 percent greater in impact than in static bending
as shown by the standard 5-minute test, Elmendorf's data on Douglas-fir

2Liska, J. A. Effect of Rapid Loading on the Compressive and Flexural
Strength of Wood., Forest Products Laboratory Rept. No. Rl767. 1950.

3Elmendorf, Armin. Stresses in Impact. Journal of the Franklin Institute.
Vol. l82. No. 6, 1916.

Rept. No. 1916 -2-
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did not show durations of stress but included results on one specimen of
southern yellow pine for which the duration in the same kind of impact test was
about 0.015 second, This duration, while not directly connected to the 175-
percent strength level, indicates the high stresses that can be developed
under extremely rapid loading.

Relation of Duration of Load to Strength

In figure 1, a straight line drawn by eye represents the trend of the data
in the long-time loading tests. This line was published in a report by

Wood4 and has since appeared with a modified scale of stress percentages in
several other publications. Figure 2 shows a straight line representing the
trend of the data from rapid-loading tests. The two straight lines and a
single point representing Elmendorf's impact data are converted to the same
scale and plotted together in figure 3. Here also the duration scale is
logarithmic.

It is evident in figure 3 that both the rapid-loading and the impact data
lie above the extension of the straight line representing the long-time
loading data, and that the impact point lies above the extension of the
line representing rapid loading. A curve representing all of these data
cannot be a straight line.

The straight line of figure 1 implies that strength values decrease without
limit as the duration is prolonged. This is obviously impossible, since
strength cannot have a value less than zero. Experiments with wood in this
and other countries indicate that there is probably a threshold strength
level somewhere above zero for which the duration is infinite.

From this evidence, it appears that the over-all strength-duration relation-
ship could well be approximated by a hyperbolic curve. The horizontal
asymptote of such a curve would represent a threshold strength for which
duration is infinite. The vertical asymptote would be at zero time, though
there is admittedly no proof that the strength becomes infinite as zero
time is approached.

Several attempts at curve-fitting showed that a hyperbola that represented
the trends of data in long-time loading and rapid loading could not be
passed through the point representing the impact loading. Each of these
trends is supported by many tests, while the impact point is related to
only one test. A curve was therefore chosen to fit the trends of the two
large groups of tests and to pass as closely as possible to the impact
point,

4
Wood L.W.

Record,
Behavior of Wood under Continued Loading. Egineering News-

Vol. 139, No. 24, 1947.

Rept. No. 1916 -3-
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Figure 3 shows an empirical hyperbolic curve passing through a point
representing a duration of stress of 0.015 second and a stress equal to
150 percent of ultimate strength in a standard test. This curve approxi-
mates the trends of data from the long-time-loading and the rapid-loading
tests. It has the equation

108.4y = + 18.3
x0.04635

in which x is the duration of stress in seconds and y is the stress ex-
pressed as a percentage of the standard-test strength. This equation is
computed so that the curve passes through three selected points. The
first point is the point just described and is somewhat below the impact
point, The second point is at the 100-percent strength level, for which
a duration of stress of 7-l/2 minutes was assumed. The third point is
arbitrarily selected from the long-time loading data with a strength level
of 69 percent and a duration of 3,750 hours (shown on fig. 1). The hori-
zontal asymptote of this hyperbola is 18.3 percent, a strength level for
which the duration is presumed to be infinite.

The hyperbolic curve of figure 3 is also shown on figure 1. It is well
within the range of the long-time loading data, though toward the upper
side of that range for strength levels of 65 percent and lower. On the

other hand, a similar curve for bending strength of Sitka spruce5 shows
still higher strength levels for this range of durations (fig. 1). The
departure of the hyperbola from the general trend of data at the 95-
percent strength level is necessary to fit it to the rapid-loading data
of figure 2. In the absence of similar information from other species,
this hyperbola may be taken to express a general relationship between
strength and duration of load for those species most used in construction.

Application to Working Stresses

The relation of duration of load to strength is important in the determina-
tion of working stresses for structural design with wood. Advantage may
be taken of the increased strength of wood under short-time loading by
increasing the working stresses where maximum load is of limited duration.
Figure 4 illustrates a convenient means for doing this. It shows the
hyperbolic curve of figure 3 plotted in a form directly applicable to
working-stress use. Basic working stresses recommended by the Forest
Products Laboratory are for the condition of long-time full load, for
which the strength is assumed to be nine-sixteenths of the strength in the
standard 5-minute test. This long-time load level is taken as 100 percent
in figure 4 with other percentages calculated from it as a base. Duration
values are converted to units of time that are easily visualized for long
as well as short durations.

5Forest Products Laboratory. Strength and Related properties of Wood Grown
in the United States. U. S. Dept. of Agr. Tech. Bull. No. 479. 99 pp.
Illus.

Rept. NO. 1916 -4-
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In the "National Design Specification for Stress-grade Lumber and Its
Fastenings," revised 1950, recommended by the National Lumber Manufacturers
Association for application to permanent structures, a condition designated
as "normal loading" is selected as the basis for working stresses in struc-
tural design. The same condition is assumed in the commercial grading rules
for stress-graded lumber, "Normal loading" contemplates that the full maxi-
mum design load will have a continuous or cumulative duration of not more
than about 10 years during the life of a permanent structure. It will be
seen in figure 4 that l0-year duration warrants an increase of about 10
percent above the long-time load level. The National Design Specification
gives working stresses that contain the 10 percent increase
for removing that increase in cases where the full maximum load is applied

with provision

permanently or for many years. That basis for working stresses conforms
to the principle of adjustment for duration of load.

Maximum working stresses for roof structures in certain areas may be based
on expected snow loads. For example, the duration of the greatest expected
snow load in temperate climates may be considered by the designer to be only
a matter of days, weeks, or at the most a few months during the expected
life of the structure. Figure 4 indicates that an increase of about 25 per-
cent over the long-time load level can be made in this instance. This is
equivalent to an increase of about 15 percent above the "normal- loading"
level.

In like manner, a designer may wish to assume that the maximum horizontal
load, as from wind or earthqake, will have a duration not exceeding a.
matter of minutes or hours during the expected life of the structure. For
this condition, a working stress may be 50 percent above the long-time load
level or about one-third above the "normal-loading" level.

When applying design stress increases for short-time loading, care should
be taken that the sizes of structural members are adequate for the dead or
long-time portion of load at a safe long-time working stress. This is
accomplished by comparing the working stresses required for a member at
each load level and its expected duration. The larger of the working
stresses governs the design of that member.

Rept. No. 1916 -5-
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Figure 3. --Relation of duration of stress to level of stress in long-
time loading and rapid loading of Douglas-fir bending
specimens. The broken line represents an extension of
the curve for long-time loading.
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118 FURTHER CHARACTERIZATIoNS oF RANDoM vARIABLES

Property 7.2. Suppose that C is a constant and X is a random variable. Then
E(cx) : cE(x).

Proof: E(CX): [*- Cxf(x)dx: C[** rf(*)dx: CE(X).
J-q J-q

Property 7.3. Let (X, I) be a two-dimensional random variable with a joint
probability distribution. Let Z: H1(X,I) and W: Hz(X, Y). Then
E(z + w): E(z) + E(w).

Proof

. r+@ /+@
E(Z + W) : I I lH,,(x, y) -f Hz(x, y)lf(x. y) dx dy' J-* J-*

r+@ r+@ 
[where /is the joint pdf of (x' Y))

: I:: ll) ,,f., y).f(x, y) dx dy * I** I** u,r*, y).f(x, y) dx dy

: E(Z) + E(W).

Property 7.4. Let X and Y be any two random variables. Then E(X + D :
E(X) + E(Y).

Proof: This follows immediately from Property 7.3 by letting H{X, Y) : X,
and H2(X, Y) : Y.

Nore: Combining Properties 7 .1, 7 .2, and 7 .4 we observe the following important fact :

lf Y: aX * b, where a ar,dbare constants, then E(Y): aE(X)* b. In words:
The expectation of a linear function is that same linear function of the expectation. This
is r'rof true unless a linear function is involved, and it is a common error to believe other-
wise. For instance, E(X2) + (O<n)r, E(ln X) * i-Lr.E(X), etc. Thus if Xassumes the
values -1 and *1, each with probability ], then E(X) : 0. However,

E(x\ : (-1)r(+) + (1)r(;) : 1 * 02.

Property 7.5. Let Xr, . . . , Xnbe z random variables. Then

E(X, * ... + X") : E(Xr)+ ... + E(X").

Proof: This follows immediately from Proper ty 7.4 by applying mathematical
induction.

Note: Combining this property with the above, we obtain

7.4

E (E,,X,\ : f, a,eG,t,
\o:' / ,:,

where the ai's ate constants.
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.124 FURTHER cHARACTERTzATToNS oF RANDoM vARTABLES 7.6

7.6 Properties of the Variance of a Random Variable

There are various important properties, in part analogous to those discussed
for the expectation of a random variable, which hold for the variance.

Property 7 .7. If C is a constant,

v(x + c): I/(n. (7.13)
Proof

v(x + c) : El(x+ c) - E(x + c)), : Etl,I^ + c) - E(n - cl,
: Elx - E(n12 : r/(x).

Note.' This property is intuitively clear, for adding a constant to an outcome X does
not change its variability, which is what the variance measures. It simply "shifts" the
values of Xto the right or to the left, depending on the sign of C.

Property 7.8. If C is a constant,

vgn: c2r(x). (7.14)
Proof

ven : EGn2 - (zgn), : c2E(x\ - cr(r(n),
: c2[E(x\ - (aq))r]: c2r(x).

Property 7.9. lf (X, Y) is a two-dimensional random variable, and if X and Y
are independent then

v(x+n:v(n+v(n. (7.15)

Proof

v(x + Y): E(x+v)2-121x+D)'
E(xz + 2xy + y') - (r<n)' - 2E(nE(n - @g))'
E(x') - (n(n)' + E(Y\ - (n(n)' : v(n + vg).

Note: It is important to rcalize that the variance is not additive, in general, as is the
expected value. With the additional assumption of independence, Property 7.9 is valid.
Nor does the variance possess the linearity property which we discussed for the expecta-
tion, that is, Y(aX + b) + aV(X) * 6. Instead we have V(aX * b) : a2V(X).

Property 7.10. Let Xt,. .., Xnben independent random variables. Then

V(Xr* "' + X"): V(X) + "'+ V(X"). (7.16)

Proof: This follows from Property 7.9 by mathematical induction.

 10-05-2019  jfm Page 26 of 30

Joe
Highlight

Joe
Highlight



Chapter 5 - Design of Light-Wood Framing

grain, and modulus of elasticity. In particular, the 1997 edition of the NDS

includes the most up-to-date design values based on test results from an eight-year

full-scale testing program that uses lumber samples from mills across the United

States and Canada. 

Characteristic structural properties for use in allowable stress design

(ASTM D1990) and load and resistance factor design (ASTM D5457) are used to 

establish design values (ASTM, 1998a; ASTM, 1998b). Test data collected in 

accordance with the applicable standards determine a characteristic strength value

for each grade and species of lumber. The value is usually the mean (average) or 

fifth percentile test value. The fifth percentile represents the value that 95 percent

of the sampled members exceeded. In ASD, characteristic structural values are

multiplied by the reduction factors in Table 5.1. The reduction factors are implicit 

in the allowable values published in the NDS-S for standardized conditions. The 

reduction factor normalizes the lumber properties to a standard set of conditions

related to load duration, moisture content, and other factors. It also includes a

safety adjustment if applicable to the particular limit state (i.e., ultimate capacity).

Therefore, for specific design conditions that differ from the standard basis,

design property values should be adjusted as described in Section 5.2.4. 

The reduction factors in Table 5.1 are derived as follows as reported in 

ASTM D2915 (ASTM, 1997): 

• Fb reduction factor = (10/16 load duration factor)(10/13 safety factor);

• Ft reduction factor = (10/16 load duration factor)(10/13 safety factor);

• Fv reduction factor = (10/16 load duration factor)(4/9 stress concentra-

tion factor) (8/9 safety factor);

• Fc reduction factor = (2/3 load duration factor)(4/5 safety factor); and 

• Fc⊥ reduction factor = (2/3 end position factor)

5.2.4 Adjustment Factors 

The allowable values published in the NDS-S are determined for a

standard set of conditions. Yet, given the many variations in the characteristics of

wood that affect the material’s structural properties, several adjustment factors are

available to modify the published values. For efficient design, it is important to

use the appropriate adjustments for conditions that vary from those used to derive

the standard design values. Table 5.2 presents adjustment factors that apply to 

different structural properties of wood. The following sections briefly discuss the

adjustment factors most commonly used in residential applications. For

information on other adjustment factors, refer to the NDS, NDS-S, and the NDS 

commentary.
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Chapter 5 - Design of Wood Framing

TABLE 5.1 
Design Properties and Associated Reduction Factors for

ASD

Stress Property 

Extreme fiber stress in bending, Fb 

Tension parallel to grain, Ft 

Shear parallel to grain, Fv 

Compression parallel to grain, Fc 

Reduction

Factor

1

2.1

1

2.1

1

4.1

1

1.9

1
Compression perpendicular to grain, Fc⊥ 

1.5

1
Modulus of elasticity, E

1.0

Sources:  ASTM, 1998a; ASTM, 1998c.

Notes:

Basis of Estimated

Characteristic

Value from Test

Data

Fifth percentile

Fifth percentile

Fifth percentile

Fifth percentile

Mean

Mean

ASTM
Limit State

Designation

Ultimate
D1990

capacity

Ultimate
D1990

capacity

Ultimate
D245

capacity

Ultimate
D1990

capacity

0.04”

deflection
1 D245

Proportional
D1990

limit
2

1The characteristic design value for F c⊥ is controlled by a deformation limit state. In fact, the lumber will densify and carry an increasing load 

as it is compressed. 
2The proportional limit of wood load-deformation behavior is not clearly defined because it is nonlinear. Therefore, designation of a 
proportional limit is subject to variations in interpretation of test data. 

TABLE 5.2 Adjustment Factor Applicability to Design Values for Wood

Adjustment Factor
2

Design Properties
1

CD Cr CH CF CP CL CM Cfu Cb CT CV Ct Ci Cc Cf

Fb ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Ft ✔ ✔ ✔ ✔ 

Fv ✔ ✔ ✔ ✔ 

⊥cF ✔ ✔ ✔ 

Fc ✔ ✔ ✔ ✔ ✔ 

E ✔ ✔ ✔ 

✔ 

✔ 

✔ 

✔ 

✔ 

✔ 

Source: Based on NDS•2.3 (AF&PA, 1997). 

Notes: 
1Basic or unadjusted values for design properties of wood are found in NDS-S. See Table 5.1 for definitions of design properties. 
2Shaded cells represent factors most commonly used in residential applications; other factors may apply to special conditions. 

Key to Adjustment Factors:

• CD, Load Duration Factor. Applies when loads are other than "normal" 10-year duration (see Section

5.2.4.1 and NDS•2.3.2).

• Cr, Repetitive Member Factor. Applies to bending members in assemblies with multiple members spaced at 

maximum 24 inches on center (see Section 5.2.4.2 and NDS•4.3.4).

5-10 Residential Structural Design Guide
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• CH, Horizontal Shear Factor. Applies to individual or multiple members with regard to horizontal, parallel-

to-grain splitting (see Section 5.2.4.3 and NDS-S).

• CF, Size Factor. Applies to member sizes/grades other than "standard" test specimens, but does not apply to

Southern Yellow Pine (see Section 5.2.4.4 and NDS-S).

• CP, Column Stability Factor. Applies to lateral support condition of compression members (see Section

5.2.4.5 and NDS•3.7.1).

• CL, Beam Stability Factor. Applies to bending members not subject to continuous lateral support on the

compression edge (see Section 5.2.4.6 and NDS•3.3.3).

• CM, Wet Service Factor. Applies where the moisture content is expected to exceed 19 percent for extended

periods (see NDS-S).

• Cfu, Flat Use Factor. Applies where dimension lumber 2 to 4 inches thick is subject to a bending load in its

weak axis direction (see NDS-S).

• Cb, Bearing Area Factor. Applies to members with bearing less than 6 inches and not nearer than 3 inches

from the members’ ends (see NDS•2.3.10).

• CT, Buckling Stiffness Factor. Applies only to maximum 2x4 dimension lumber in the top chord of wood

trusses that are subjected to combined flexure and axial compression (see NDS•4.4.3).

• CV, Volume Factor. Applies to glulam bending members loaded perpendicular to the wide face of the

laminations in strong axis bending (see NDS•5.3.2).

• Ct, Temperature Factor. Applies where temperatures exceed 100
o
F for long periods; not normally required

when wood members are subjected to intermittent higher temperatures such as in roof structures (see

NDS•2.4.3 and NDS•Appendix C).

• Ci, Incising Factor. Applies where structural sawn lumber is incised to increase penetration of preservatives

with small incisions cut parallel to the grain (see NDS•2.3.11).

• Cc, Curvature Factor. Applies only to curved portions of glued laminated bending members (see

NDS•5.3.4).

• Cf, Form Factor. Applies where bending members are either round or square with diagonal loading (see

NDS•2.3.8).

5.2.4.1 Load Duration Factor (CD)

Lumber strength is affected by the cumulative duration of maximum

variable loads experienced during the life of the structure. In other words, strength

is affected by both the load intensity and its duration (i.e., the load history).

Because of its natural composition, wood is better able to resist higher short-term

loads (i.e., transient live loads or impact loads) than long-term loads (i.e., dead

loads and sustained live loads). Under impact loading, wood can resist about

twice as much stress as the standard 10-year load duration (i.e., "normal

duration") to which wood bending stress properties are normalized in the NDS. 

When other loads with different duration characteristics are considered, it

is necessary to modify certain tabulated stresses by a load duration factor (CD) as 

shown in Table 5.3. Values of the load duration factor, CD, for various load types
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are based on the total accumulated time effects of a given type of load during the

useful life of a structure. CD increases with decreasing load duration.

Where more than one load type is specified in a design analysis, the load

duration factor associated with the shortest duration load is applied to the entire

combination of loads. For example, for the load combination, Dead Load + Snow 

Load + Wind Load, the load duration factor, CD, is equal to 1.6. 

TABLE 5.3 Recommended Load Duration Factors for ASD 

Load Type Load Duration Recommended CD Value 

Permanent (dead load) Lifetime 0.9

Normal Ten years 1.0

Occupancy (live load)
1

Ten years to seven days 1.0 to 1.25

Snow
2

One month to seven days 1.15 to 1.25

Temporary construction Seven days 1.25

Wind and seismic
3

Ten minutes to one minute 1.6 to 1.8

Impact One second 2.0

Source:  Based on NDS•2.3.2 and NDS•Appendix B (AF&PA, 1997). 

Notes: 
1The NDS uses a live load duration of ten years (CD = 1.0). The factor of 1.25 is consistent with the time effect factor for live load used 

in the new wood LRFD provisions (AF&AP, 1996a). 
2The NDS uses a snow load duration of one month (CD = 1.15). The factor of 1.25 is consistent with the time effect factor for snow load 

used in the new wood LRFD provisions (AF&PA, 1996a). 
3The NDS uses a wind and seismic load duration of ten minutes (CD = 1.6). The factor may be as high as 1.8 for earthquake loads which 
generally have a duration of less than 1 minute with a much shorter duration for ground motions in the design level range. 

5.2.4.2 Repetitive Member Factor (Cr)

When three or more parallel dimension lumber members are spaced a 

maximum of 24 inches on center and connected with structural sheathing, they

comprise a structural “system” with more bending capacity than the sum of the

single members acting individually. Therefore, most elements in a house structure

benefit from an adjustment for the system strength effects inherent in repetitive

members.

The tabulated design values given in the NDS are based on single

members; thus, an increase in allowable stress is permitted in order to account for 

repetitive members. While the NDS recommends a repetitive member factor of 

1.15 or a 15 percent increase in bending strength, system assembly tests have 

demonstrated that the NDS repetitive member factor is conservative for certain

conditions. In fact, test results from several studies support the range of repetitive

member factors shown in Table 5.4 for certain design applications. As shown in

Table 5.2, the adjustment factor applies only to extreme fiber in bending, Fb.

Later sections of Chapter 5 cover other system adjustments related to

concentrated loads, header framing assemblies, and deflection (stiffness)

considerations.
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